K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử (AEF) cắt CC’ tại I. Khi đó ta có AE// FI, AF // EI nên tứ giác AEIF là hình bình hành. Trên cạnh CC’ lấy điểm J sao cho CJ = DF. Vì CJ song song và bằng DF nên JF song song và bằng CD. Do đó tứ giác CDFJ là hình chữ nhật. Từ đó suy ra FJ song song và bằng AB. Do đó AF song song và bằng BJ. Vì AF cũng song song và bằng EI nên BJ song song và bằng EI.

Từ đó suy ra IJ = EB = DF = JC = c/3

Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên V H = V A . BCIE + V A . DCIF

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì thể tích khối hộp chữ nhật ABCD.A’B’C’D’ bằng abc nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 5 2017

Khối đa diện

Khối đa diện

23 tháng 2 2017

28 tháng 4 2019

Đáp án D

Phương pháp: Sử dụng phương pháp tọa độ hóa.

Cách giải:

Gắn hệ trục Oxyz, có các tia Ox, Oy, Oz lần lượt trùng với các tia AB, AD, AA’.

A(0;0;0), B(1;0;0), C(1;2;0), D(0;2;0), A’(0;0;3), B’(1;0;3), C’(1;2;3), D’(0;2;3)

(P) cắt các tia AB, AD, AA’ lần lượt tại E, F, G (khác A). Gọi E(a;0;0), F(0;b;0), G(0;0;c), (a,b,c > 0)

Phương trình mặt phẳng (P):  x a + y b + c z = 1

Thể tích tứ diện AEFG: 

Ta có: 

=>Vmin = 27 khi và chỉ khi 

Khi đó, T = AE + AF + AG = a + b + c = 3 + 6 + 9 = 18

7 tháng 8 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thể tích khối chóp D’.DMN bằng thể tích khối chóp D.D’MN

Ta có: S D ' MN = S A ' B ' C ' D ' - S D ' A ' M + S D ' C ' N + S B ' MN

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thể tích khối chóp

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra tỷ số giữa thể tích khối chóp D’.DMN và thể tích khối hộp chữ nhật ABCD.A’B’C’D’ bằng 1/8

12 tháng 5 2017

17 tháng 8 2019

Đáp án A.

Ta chứng minh được công thức tỷ số thể tích tối với khối hộp như sau (học sinh có thể tự chứng minh).

V A ' B ' C ' D ' . M N P Q V A ' B ' C ' D ' . A B C D = 1 2 A ' M A ' A + C ' P C ' C = 1 2 B ' Q B ' B + D N D ' D = 7 2

Do đó thể tích khối đa diện nhỏ hơn là  15 2 V = 5 2 .2018 = 5045 6 .

18 tháng 2 2017

23 tháng 2 2018

Đáp án D

Gọi E là giao điểm của NP và CD. Gọi G là giao điểm của NP và CC’. Gọi K là giao điểm của MG và B’C’. Gọi Q là giao điểm của ME và AD. Khi đó mặt phẳng (MNP) chính là mặt phẳng (MEG). Gọi d 1 ,   d 2  lần lượt là khoảng cách từ C, A đến mặt phẳng (MEG). Do AC cắt (MEG) tại điểm H (như hình vẽ) nên d 1 d 2 = H C H A . Do tứ diện CMEG là tứ diện vuông tại C nên

1 d 1 2 = 1 C M 2 + 1 C E 2 + 1 C G 2

Ta có G C ' G C = C ' N C E = 1 3  

 

Suy ra G C = 3 2 C C ' = 9 a 2  

Như vậy: 1 d 1 2 = 1 a 2 + 4 9 a 2 + 4 81 a 2  

Từ đó d 1 2 = 81 a 2 12 ⇒ d 1 = 9 11 . Ta có Q D M C = E D E C = 1 3 ⇒ Q D = a 3  

Ta có Δ H C M đồng dạng với Δ H A Q  nên:

H C H A = M C A Q = a 2 a − a 3 = 3 5 ⇒ d 1 d 2 = 3 5 ⇒ d 2 = 5 3 d 1 = 5.9 a 3.11 = 15 a 11

3 tháng 9 2018