Chứng minh rằng nếu ab=2cd thì abcd chia hết cho 67
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:abcd=100ab+cd=2.(100cd)+cd=200cd+cd=201cd=3.67cd chia hết cho 67(đpcm)
abcd=100ab+ cd=100.2.cd+cd=201.cd
Vì 201 chia hết cho 67=> abcd chia hết cho 67 (Dpcm)
Mình có cách hay hơn nè!
=> ( 5a+3b ) chia hết cho 13
=> 30a + 18b chia hết cho 13
Mà: 26a chia hết cho 13
13b chia hết cho 13
=> 30a - 26a + 18b + 13b chia hết cho 13
=> 4a +31b chia hết cho 13
=> đpcm
Theo đề bài: p là số nguyên tố lớn hơn 3
=> p là số lẻ
=> p = 2k + 1 ( \(k\in z;k>1\))
=> A = (p - 1)( p +1 ) = 2k(2k+2) = 4k(k+1)
=> A chia hết cho 8 (1)
Ta lại có: p = 3n + 1 hoặc 3n - 1 (\(n\in Z,N>1\))
=> A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 24
Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:
A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.
Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.
Vậy A = (p – 1)(p + 1) chia hết cho 24
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
a) Nếu một trong hai số a và b là chẵn thì => a . b . ( a + b ) là một số chẵn => chia hết cho 2
Nếu cả hai số a và b đều là số lẻ => a + b là một số chẵn = > a . b . ( a + b ) là một số chẵn => chia hết cho 2
Nếu cả hai số a và b đều là số chẵn => a . b . ( a + b ) là một số chẵn => chia hết cho 2
Vậy với mọi trường hợp thfi a . b . ( a + b ) luôn chia hết cho 2
( đpcm )
b) Để a + b không chia hết cho 2 => hai số a và b không cùng tính chẵn lẻ => thì một trong hai số là số chẵn
Khi một trong hai số a và b là chẵn thì tích a x b cũng sẽ là một số chẵn => a x b chia hết cho 2
Vậy nếu a + b không chia hết cho 2 thi tích a x b chia hết cho 2
( đpcm )
abcd=100ab+ cd=100.2.cd+cd=201.cd
Vì 201 chia hết cho 67=> abcd chia hết cho 67 (Dpcm)
abcd=100ab+cd=100.2.cd+cd=201.cd
Vì 201 chia hết cho 67
=> abcd chia hết cho 67
=> (ĐPCM)