Tìm tất cả các giá trị thực của tham số m để bất phương trình 4 x − 2 m + 1 2 x − 3 − 2 m > 0 có nghiệm đúng với mọi x ∈ ℝ
A. Với mọi x ∈ ℝ
B. m < − 3 2
C. m ≠ − 2 3
D. m ≤ − 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(4m+8\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow m^2-6m-7\le0\)
\(\Rightarrow-1\le m\le7\)
\(\Rightarrow m=\left\{-1;0;1;2;3;4;5;6;7\right\}\)
Đáp án D
BPT <=> 23x + (m – 1)3x + m – 1 > 0
<=> 23x – 3x – 1 + m(3x + 1) > 0
⇔ m > 3 x - 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ (*).
Xét hàm số f x = 3 x - 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ , ta có
f ' x = 8 x ln 3 - ln 8 . 3 x - ln 8 3 x + 1 2 < 0 ; ∀ x ∈ ℝ .
Suy ra f(x) là hàm số nghịch biến trên ℝ .
Mà lim x → - ∞ f x = 1 , do đó
m i n x ∈ ℝ f x = lim x → - ∞ f x = 1 .
Vậy (*) ⇔ m ≥ m i n x ∈ ℝ f x = 1 ⇒ m ≥ 1 là giá trị cần tìm.