1) Cho A = 6 ^ 2020 + 6 ^ 2021 + 6 ^ 2022 + 6 ^ 2023 . Chứng tỏ rằng: A chia hết cho 7
2) Tìm số tự nhiên n, biết 1+2+3+...+n=1275 .
Các bạn giúp mình câu này với mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)
\(=7\left(6^{2020}+6^{2022}\right)⋮7\)
Bài 1:
$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$
Ta có đpcm.
\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)
Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)
Vậy M chia hết cho 31.
\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)
Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)
Vậy N chia hết cho 8
Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$
$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$
$\Rightarrow 5a-a=5^{2024}-1$
$\Rightarrow 4a=5^{2024}-1$
$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)
1) A=62020+62021+62022+62023
A= ( 62020+62021) + ( 62022+62023)
A= 62020.( 1+6) + 62022.( 1+6)
A= 62020.7+62022.7
A= 7.( 62020+62022)
Vì 7 chia hết cho 7 => 7.(62020+62022) chia hết cho 7 hay A chia hết cho 7.
Vậy A chia hết cho 7
_HT_
2) 1+2+3+...+n=1275
Ta thấy dãy số trên là dãy số cách đều nên có khoảng cách là 1 đơn vị
=> Dãy số trên có n số hạng
Tổng của dãy số trên là : (n+1).n:2 = 1275
(n+1).n= 1275.2=2550
Mà n và n+1 là 2 số tự nhiên liên tiếp => (n+1).n = 51.50
=> n=50 ( vì n< n+1)
Vậy n=50
_HT_