K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 1

\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)

Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)

Vậy M chia hết cho 31.

\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)

Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)

Vậy N chia hết cho 8

`N = 7^6 + 2.7^3 + 1 + 8^2022`

`= (7^3+1)^2 + 8^2022`.

Ta có: `7^3 + 1 vdots 7 + 1 =8`

`8^2022 vdots 8`

`=> N vdots 8`

26 tháng 7 2023

\(M=32^{2023}-32^{2021}=32^{2021}\left(32^2-1\right)=32^{2021}.1023=32^{2021}.31.33\)

Vì \(31⋮31=>M⋮31\)

26 tháng 7 2023

Chăm quá !

26 tháng 7 2018

Cách 1: 4 n + 3 2 - 25 = 4 n + 3 2 - 5 2

= (4n + 3 + 5)(4n + 3 – 5)

= (4n + 8)(4n – 2)

= 4(n + 2). 2(2n – 1)

= 8(n + 2)(2n – 1).

Vì n ∈ Z nên (n + 2)(2n – 1) ∈ Z. Do đo 8(n + 2)(2n – 1) chia hết cho 8.

Cách 2:  4 n + 3 2 - 25 = 16 n 2 + 24 n + 9 - 25  

= 16 n 2  + 24n – 16

= 8( 2 n 2  + 3n – 2).

Vì n ∈ Z nên 2 n 2  + 3n – 2 ∈ Z. Do đo 8( 2 n 2  + 3n – 2) chia hết cho 8.

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:
Nếu $a,b$ khác tính chẵn lẻ, tức là 1 trong 2 số sẽ có 1 số chẵn và 1 số lẻ.

$\Rightarrow ab\vdots 2$

$\Rightarrow ab(a+b+2021^{2022}+1)\vdots 2$

Nếu $a,b$ cùng tính chẵn lẻ

$\Rightarrow a+b$ chẵn

$\Rightarrow a+b+2021^{2022}+1$ chẵn

$\Rightarrow ab(a+b+2021^{2022}+1)$ chẵn, hay $\vdots 2$

Từ 2 TH vừa xét ta có đpcm.

30 tháng 9 2018

a) \(33^{n+1}-33^n=33^n.33-33^n\)

\(=33^n\left(33-1\right)=33^n.32\)

\(32⋮32\forall n\) nên \(33^n.32⋮32\forall n\)

Vậy \(33^{n+1}-33^n⋮32\left(đpcm\right)\)

b) \(\left(4n+7\right)^2-49=\left(4n+7\right)^2-7^2\)

\(=\left(4n+7-7\right)\left(4n+7+7\right)=4n\left(4n+14\right)\)

\(=8n^2+64n=8\left(n^2+8n\right)\)

\(8⋮8\forall n\) nên \(8\left(n^2+8n\right)⋮8\forall n\)

Vậy \(\left(4n+7\right)^2-49⋮8\forall n\left(đpcm\right)\)

23 tháng 9 2017

\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)

25 tháng 9 2017

Sao có câu a) không vậy bạn?

21 tháng 6 2017

a)Ta có:a2(a+1)+2a(a+1)=(a2+2a)(a+1)

=a(a+1)(a+2)

Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số \(⋮2\);1 thừa số \(⋮3\)

mà (2;3)=1

=>a(a+1)(a+2)\(⋮2.3\)=6 hay a2(a+1)+2a(a+1)\(⋮6\)

b)Ta có:

a(2a-3)-2a(a-1)=2a2-3a-2a2+2a=-a

cái này có phải đề sai k vậy bạn

21 tháng 6 2017

đúng mà bn

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.