K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 11 2021

Lời giải:

$n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)$

$=n(n+1)(n+2)(n+3)$

Vì $n,n+1, n+2, n+3$ là 4 số nguyên liên tiếp nên trong đây sẽ có:

- Một số chia hết cho 2

- Một số chia hết cho 4

- Một số chia hết cho 3

Mà $2,3,4$ đôi một nguyên tố cùng nhau nên:

$\Rightarrow n(n+1)(n+2)(n+3)\vdots (2.3.4=24)$

15 tháng 11 2021

 
16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

t A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1) 
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*) 
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co: 
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] = 
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4) 
nhận thấy A(k+1) là tích của số tự nhiên liên tiếp=> A(k+1) chia hết cho 24 
 => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*). 

14 tháng 8 2019

Ta có:

    n⁴ + 6n³ + 11n² + 6n

=  n⁴ + 2n³ + 4n³ + 8n² + 3n² + 6n

=  (n⁴+2n³) + (4n³ + 8n²)+(3n² + 6n)

= n³(n+2) + 4n²(n+2) + 3n(n+2) 

= (n+2)(n³+4n²+3n)

= (n+2)n(n²+3n)

= n(n+1)(n+2)(n+3)

Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n⁴+2n³+4n³+8n²+3n²+6n chia hết cho 24.

Chúc bạn học tốt😊😊. kk mình nha😅😅

5 tháng 7 2015

A = n4 + 6n3 + 11n2 + 6n
= n(n3 + 6n2 + 11n + 6)
= n(n3 + n2 + 5n2 + 5n + 6n + 6)
= n[n2(n + 1) + 5n(n + 1) + 6(n + 1)]
= n(n + 1)(n2 + 5n + 6)
= n(n + 1)(n + 2)(n + 3) 
A = n(n + 1)(n + 2)(n + 3)
Trong đó là tích 4 số tự nhiên liên tiếp có một số chia hết cho 3 (1)
4 tự nhiên liên tiếp có hai số chẵn liên tiếp, trong 2 số chẵn liên tiếp có một số chia hết cho 2 và một số chia hết cho 4. Nên tích 4 tự nhiên liên tiếp chia hết cho 8  (2)
3 và 8 là hai số nguyên tố cùng nhau (3)
Từ (1), (2), (3) => n+6n3+11n2+6n chia hết cho tích (3 . 8) = 24 (đpcm)

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

Ta có:

\(M=n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)

\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)

\(=n(n+1)(n^2+5n+6)\)

\(=n(n+1)[n(n+2)+3(n+2)]\)

\(=n(n+1)(n+2)(n+3)\)

Trong 4 số nguyên liên tiếp $n,n+1,n+2,n+3$ có ít nhất một số chia hết cho $3$ nên \(M=n(n+1)(n+2)(n+3)\vdots 3(*)\)

Trong 4 số nguyên liên tiếp, bao giờ cũng có 2 số chẵn, một số lẻ. Trong 2 số chẵn liên tiếp bào giờ cũng có 1 số chia hết cho $2$, một số chia hết cho $4$ nên \(M=n(n+1)(n+2)(n+3)\vdots (2.4=8)(**)\)

Từ $(*)$ và $(**)$, mà $(3,8)=1$ nên $M\vdots (3.8=24)$

Ta có đpcm.

28 tháng 7 2015

Ta có:

n4+6n3+11n2+6n = n4+2n3+4n3+8n2+3n2+6n = (n4+2n3)+(4n3+8n2)+(3n2+6n) = n3(n+2)+4n2(n+2)+3n(n+2) 

= (n+2)(n3+4n2+3n) = (n+2)n(n2+3n) = n(n+1)(n+2)(n+3)

Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n4+2n3+4n3+8n2+3n2+6n chia hết cho 24.