Tính \(\frac{1}{1.3.5.7}+\frac{1}{3.5.7.9}+\frac{1}{5.7.9.11}+...+\frac{1}{\left(2n+1\right)\left(2n+3\right)\left(2n+5\right)\left(2n+7\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.\left(2n-1\right)}+\frac{1}{3.\left(2n-3\right)}+...+\frac{1}{\left(2n-3\right).3}+\frac{1}{\left(2n-1\right).1}\)
\(=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{3+2n-3}{\left(2n-3\right).3}+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)
\(=\frac{1}{2n}\left(1+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-3}+\frac{1}{3}+\frac{1}{2n-1}+1\right)\)
\(=\frac{1}{n}\left(1+\frac{1}{3}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{1}{n}\).
Ta có: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}\)
\(=\frac{1.2.3.4..5.6...\left(2n-1\right).2n}{\left(2.4.6....2n\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)
\(=\frac{1.2.3.4.5.6...\left(2n-1\right)}{2^n.1.2.3....n\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)
\(=\frac{1}{2^n}\left(đpcm\right)\)