K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

Chọn D

           

2 tháng 8 2018

Đáp án B.

Gọi O là tâm của hình vuông ABCD, nối S O ∩ B ' D ' = I . 

Và nối AI cát SC tại C’ suy ra mp (AB’D’) cắt SC tại C’.

Tam giác SAC vuông tại A, có S C 2 = S A 2 + A C 2 = 6 a 2 ⇒ S C = a 6 . 

Ta có B C ⊥ S A B ⇒ B C ⊥ A B '  và S B ⊥ A B ' ⇒ A B ' ⊥ S C . 

Tương tự A D ' ⊥ S C  suy ra  S C ⊥ ( A B ' D ' ) ≡ ( A B ' C ' D ' ) ⇒ S C ⊥ A C ' .

Mà S C ' . S C = S A 2 ⇒ S C ' S C = S A 2 S C 2 = 2 3  và S B ' S B = S A 2 S B 2 = 4 5 . 

Do đó  V S . A B ' C ' = 8 15 V S . A B C = 8 30 V S . A B C D  mà V S . A B C D = 1 3 . S A . S A B C D = 2 a 3 3 . 

Vậy thể tích cần tính là  V S . A B ' C ' D ' = 2 . V S . A B ' C ' = 16 a 3 45

15 tháng 12 2017

Đáp án C

3 tháng 4 2018

Đáp án là C

21 tháng 11 2019

Chọn C

Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.

Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.

Trong tam giác vuông SAB' ta có:

15 tháng 4 2017

Giải bài 8 trang 26 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 8 trang 26 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 8 trang 26 sgk Giải tích 12 | Để học tốt Toán 12Giải bài 8 trang 26 sgk Giải tích 12 | Để học tốt Toán 12Giải bài 8 trang 26 sgk Giải tích 12 | Để học tốt Toán 12 S ∆ A B ' C ' = 1 2 B ' C ' . A B ' = 1 2 . c 2 a 2 + c 2 . b a 2 + b 2 + c 2 . c a a 2 + c 2

18 tháng 3 2019

Đáp án B

Ta có: B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ M A  

Mặt khác A M ⊥ S B ⇒ A M ⊥ S B C ⇒ A N ⊥ S C , tương tự A N ⊥ S C  

Do đó S C ⊥ A M N , mặt khác ∆ S B C  vuông tại B suy ra  tan B S C ^ = B C S B = a S A 2 + A B 2 = 1 3

⇒ S B ; S C ^ = B S C ^ = 30 ° ⇒ S B ; A M N ^ = 60 ° .

23 tháng 10 2021

sao suy ra được góc giữa SB; AMN = 60 ạ?

 

2 tháng 2 2018

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CB\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AB \bot CB\)

\( \Rightarrow CB \bot \left( {SAB} \right)\)

\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CD\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AD \bot CD\)

\( \Rightarrow CD \bot \left( {SAD} \right)\)

b) Ta có:

\(\left. \begin{array}{l}CB \bot \left( {SAB} \right) \Rightarrow CB \bot AH\\AH \bot SB\end{array} \right\} \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)

\(\left. \begin{array}{l}CD \bot \left( {SAD} \right) \Rightarrow CD \bot AK\\AK \bot SD\end{array} \right\} \Rightarrow AK \bot \left( {SC{\rm{D}}} \right) \Rightarrow AK \bot SC\)

\( \Rightarrow SC \bot \left( {AHK} \right) \Rightarrow SC \bot HK\)

\(\begin{array}{l}\Delta SAB = \Delta SA{\rm{D}}\left( {c.g.c} \right) \Rightarrow SH = SK,SB = S{\rm{D}}\\\left. \begin{array}{l} \Rightarrow \frac{{SH}}{{SB}} = \frac{{SK}}{{S{\rm{D}}}} \Rightarrow HK\parallel B{\rm{D}}\\SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot B{\rm{D}}\end{array} \right\} \Rightarrow SA \bot HK\end{array}\)

\(\left. \begin{array}{l}SC \bot HK\\SA \bot HK\end{array} \right\} \Rightarrow HK \bot \left( {SAC} \right) \Rightarrow HK \bot AI\)

19 tháng 1 2018

Chọn C.

Dễ thấy BD ⊥ SC, nên BD // (AB'C'D'), suy ra BD // B'D'.

Gọi I = AC ∩ BD, J = AC'  ∩  SI, khi đó J là trọng tâm của tam giác SAC và J ∈ B'D'.

Suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó dễ thấy

Giải sách bài tập Toán 12 | Giải sbt Toán 12