K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

TXĐ: [0; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y’ = 0 ⇔ x = 100

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đồng biến trên khoảng (0; 100) và nghịch biến trên khoảng (100; + ∞ )

19 tháng 1 2018

TXĐ: (- ∞ ; 6 ) ∪ ( 6 ; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y’ = 0 ⇔ x = 3 hoặc x = -3

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đồng biến trên các khoảng (- ∞ ; -3), (3; + ∞ ), nghịch biến trên các khoảng (-3; − 6  − 6 ), ( 6 ; 3).

1 tháng 6 2021

TXĐ: D = R \ {-2}

Ta có: \(y'=\dfrac{\left(-2x+2\right)\left(x+2\right)-\left(-x^2+2x-1\right)}{\left(x+2\right)^2}=\dfrac{-x^2-4x+5}{\left(x+2\right)^2}\)

\(y'=0\Rightarrow-x^2-4x+5=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

⇒ Hàm số y đồng biến trên (-5, -2) và (-2, 1)

Hàm số y nghịch biến trên (-∞, -5) và (1, +∞)

1 tháng 8 2016

cả nhà giúp mình với mai minh kiểm tra chất lượng rồi. Thanks all.

29 tháng 11 2019

a) TXĐ: [0; +∞)

y’ = 0 ⇔ x = 100

Vậy hàm số đồng biến trên khoảng (0; 100) và nghịch biến trên khoảng (100;  + ∞ )

b) TXĐ: ( - ∞ ; √6) ∪ (√6;  + ∞ )

y’ = 0 ⇔ x = 3 hoặc x = -3

Vậy hàm số đồng biến trên các khoảng ( - ∞ ; -3), (3;  + ∞ ), nghịch biến trên các khoảng (-3; −√6 − 6 ), (√6; 3).

8 tháng 9 2023

\(f\left(x\right)=x+\sqrt[]{x^2-4}\)

\(f\left(x\right)\) xác định khi và chỉ khi

\(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow x\le-2\cup x\ge2\)

Tập xác định : \(D=(-\infty;-2]\cup[2;+\infty)\)

\(f'\left(x\right)=1+\dfrac{x}{\sqrt[]{x^2-4}}\)

\(f'\left(x\right)=0\)

\(\Leftrightarrow1+\dfrac{x}{\sqrt[]{x^2-4}}=0\)

\(\Leftrightarrow\dfrac{\sqrt[]{x^2-4}+x}{\sqrt[]{x^2-4}}=0\)

\(\Leftrightarrow\sqrt[]{x^2-4}+x=0\left(x< -2;x>2\right)\)

Theo bất đẳng thức Bunhiacopxki:

\(\left(1.\sqrt[]{x^2-4}+1.x\right)^2\le2\left(2x^2+4\right)=4\left(x^2+2\right)\)

\(pt\Leftrightarrow4\left(x^2+2\right)=0\left(vô.lý\right)\)

\(\Rightarrow\) phương trình vô nghiệm

8 tháng 9 2023

Tiếp tục bài giải, mình nhấn nút gửi

\(...\Rightarrow f'\left(x\right)>0,\forall x\in D\)

\(\Rightarrow f\left(x\right)\) luôn luôn tăng trên tập xác định D.