Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 1, SA vuông góc với đáy, góc giữa mặt bên SBC và đáy bằng 60 độ. Diện tích mặt cầu ngoại tiếp hình chóp S.ABC bằng bao nhiêu?
A. 43π/12.
B. 43π/36.
C. 4 π a 3 16
D. 43π/4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi M là trung điểm BC.
Dễ dàng chứng minh ∠ S B C , A B C = ∠ S M A = 60 °
⇒ S A = A M 3 = 3 2 . Đây là khối chóp có cạnh bên
vuông góc đáy nên bán kính mặt cầu ngoại tiếp được tính là: R 2 = S A 2 2 + 2 A M 3 2 = 43 48 ⇒ S = 4 πR 2 = 43 π 12 .
Mình không thạo vẽ hình trên này nên bạn tự vẽ hình nhé.
Gọi K là hình chiếu vuông góc của S trên BC.
Giả sử \(\overrightarrow{CK}=x\overrightarrow{CB}\left(0< x< 1\right)\)
Đặt \(SC=ka\Rightarrow\left\{{}\begin{matrix}BC=a\sqrt{k^2+4}\\AC=a\sqrt{k^2+8}\end{matrix}\right.\)
Ta có: \(\dfrac{1}{SK^2}=\dfrac{1}{SB^2}+\dfrac{1}{SC^2}=\dfrac{1}{\left(2a\right)^2}+\dfrac{1}{\left(ka\right)^2}\)
\(\Rightarrow SK=\dfrac{2ka}{\sqrt{k^2+4}}\)
Ta có:
\(\left(\left(SBC\right);\left(ABC\right)\right)=45^0\)
\(\Rightarrow\left(AB;SK\right)=45^0\)
\(\Leftrightarrow\dfrac{\overrightarrow{AB}.\overrightarrow{SK}}{AB.SK}=cos45^0\Leftrightarrow\dfrac{\overrightarrow{AB}.\overrightarrow{SK}}{AB.SK}=\dfrac{\sqrt{2}}{2}\)
Lại có:
\(\overrightarrow{AB}.\overrightarrow{SK}=\left(\overrightarrow{SB}-\overrightarrow{SA}\right).\left[x\overrightarrow{SB}+\left(1-x\right)\overrightarrow{SC}\right]\)
\(=xSB^2-x\overrightarrow{SA}.\overrightarrow{SB}+\left(x-1\right).\overrightarrow{SC}.\overrightarrow{SA}\)
\(=x.4a^2-x.4a^2.\dfrac{1}{2}+\left(x-1\right).\dfrac{4a^2+k^2a^2-a^2\left(k^2+8\right)}{2}\)
\(=2xa^2+\left(x-1\right).\left(-2a^2\right)=2a^2\)
\(\Rightarrow\dfrac{\sqrt{2}}{2}=\dfrac{2a^2}{2a.\dfrac{2ka}{\sqrt{k^2+4}}}\Leftrightarrow k=2\)
Do đó:
\(\left\{{}\begin{matrix}SC=2a\\BC=2a\sqrt{2}\\AC=2a\sqrt{3}\end{matrix}\right.\)
Ta có:
\(R=\sqrt{R_{SAB}^2+R_{ABC}^2-\dfrac{AB^2}{4}}\)
\(=\sqrt{\left(\dfrac{2a\sqrt{3}}{3}\right)^2+\left(a\sqrt{3}\right)^2-\dfrac{\left(2a\right)^2}{4}}=\dfrac{a\sqrt{30}}{3}\)
\(\Rightarrow S=4\pi R^2=4\pi.\dfrac{10}{3}a^2=\dfrac{40}{3}\pi a^2\)
dạ em nhờ các anh chị, các bạn giải giúp mình bài toán này với ạ!
Đáp án B
Từ giả thiết ta có SO là trục của đường tròn ngoại tiếp tam giác ABC và SA=SB=a. Trong mặt phẳng (SAO), trung trực của cạnh SA cắt SO tại I thì I là tâm của mặt cầu ngoại tiếp hình chóp. Khi đó ta tính được:
Gọi G là trọng tâm của tam giác đều ABC, suy ra G là tâm đường tròn ngoại tiếp DABC
Trục của đường tròn ngoại tiếp DABC cắt mặt phẳng trung trực của cạnh bên SA tại tâm I của mặt cầu ngoại tiếp hình chóp S.ABC. Tính
Đáp án A