K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Đáp án B

27 tháng 9 2019

Đáp án B

HDG:

Dễ dàng chứng minh ∆ S B C  vuông tại B

Ta có (SAB)  ⊥ (SBC) theo giao tuyến SB. Kẻ

17 tháng 8 2019

9 tháng 2 2018

Đáp án D

Gọi H là trung điểm của BC ta có:  A H ⊥ B C     Do  A B C ⊥ S B C ⇒ A H ⊥ S B C

Đặt  A H = x ⇒ H C = a 2 − x 2 = H B = S H ⇒ Δ S B C

 vuông tại S (do đường trùng tuyến bằng  cạnh đối diện). Suy ra B C = S B 2 + S C 2 = a 3 .  Gọi O là tâm đường tròn ngoại tiếp  Δ A B C ⇒ O ∈ A H ⇒ O A = O B = O C = OS   .Ta có:  R = R A B C = A C 2 sin B ,    trong đó   sin B = A H A B = A   S 2 − S H 2 A B = 1 2 Do đó  R C = a ⇒ S x q = 4 π R 2 C = 4 π a 2 .

29 tháng 4 2017

Đáp án B

10 tháng 5 2019

21 tháng 8 2018

18 tháng 6 2018

Đáp án D.

4 tháng 1 2019

Đáp án B

12 tháng 3 2019