với mọi số n .Tìm số dư của 101n+42015 khi chia cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100
c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)
vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3
Mà(2, 3) = 1
⇒n(n-1)(n-2) chia hết cho 2.3 = 6
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
Ta chứng minh \(2^{3n+2}\equiv4\left(mod7\right)\) với mọi \(n\inℕ\).
Với \(n=0\) thì \(2^{3n+2}\equiv4\left(mod7\right)\), luôn đúng.
Giả sử khẳng định đúng đến \(n=k\), khi đó \(2^{3k+2}\equiv4\left(mod7\right)\). Ta cần chứng minh khẳng định đúng với \(n=k+1\). Thật vậy, ta có \(2^{3\left(k+1\right)+2}=2^{3k+5}=8.2^{3k+2}\). Do \(2^{3k+2}\equiv4\left(mod7\right)\) nên đặt \(2^{3k+2}=7a+4\left(a\inℕ\right)\). Từ đó \(2^{3\left(k+1\right)+2}=8.2^{3k+2}=8\left(7a+4\right)=56a+32\). Do \(56a\equiv0\left(mo\text{d}7\right)\) và \(32\equiv4\left(mod7\right)\), suy ra \(56a+32\equiv4\left(mod7\right)\). Do vậy, \(2^{3\left(k+1\right)+2}\equiv4\left(mod7\right)\), vậy khẳng định đúng với \(n=k+1\) \(\Rightarrow2^{3n+2}\equiv4\left(mod7\right),\forall n\inℕ\). Lại có \(2015\equiv-1\left(mod7\right)\) nên \(2^{3n+2}+2015\equiv3\left(mod7\right),\forall n\inℕ\).
Ta có
M = 101 n + 1 – 101 n = 101 n . 101 – 101 n = 101 n ( 101 – 1 ) = 101 n . 100
Suy ra M có hai chữ số tận cùng là 00.
Đáp án cần chọn là: A
4/ Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369