K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2021

a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100

c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)

vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3

Mà(2, 3) = 1 

⇒n(n-1)(n-2) chia hết cho 2.3 = 6

24 tháng 7 2021

phần b mik ko giải đc 

Bài 1:

                                      Giải :

Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\)   \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)

\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)

\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)

\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)

\(\Rightarrow E⋮6\)

Do \(E⋮6\)nên \(E\div6\)dư 0

Vậy \(E\div6\)có số dư bằng \(0\)

Bài 2:

                                             Giải :

Ta có:   \(n.\left(n+2\right).\left(n+7\right)\)

     \(=\left(n^2+2n\right).\left(n+7\right)\)

     \(=n^3+2n^2+7n^2+14n\)

     \(=n^3+9n^2+14n\)

     \(=n.\left(n^2+9n+14\right)\)

10 tháng 10 2021

cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13

5 tháng 12 2017

2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d

=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d

=> 7(5n+7) chia hết cho d

hay 35n+49 chia hết cho d

(35n+50)-(35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d

(35n-35n)+(50-49) chia hết cho d

0+1 chia hết cho d 1

chia hết cho d => d=1

Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)

Ta có a chia 25 dư 5 => a + 20 chia hết cho 25

        a chia 28 dư 8 => a + 20 chia hết cho 28

        a chia 35 dư 15 => a + 20 chia hết cho 35

=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}

Mà 119 < (a + 20) < 1020

Nên a + 20 = 700

=> a = 680

Vậy số tự nhiên cần tìm là 680

23 tháng 6 2023

 Ta chứng minh \(2^{3n+2}\equiv4\left(mod7\right)\) với mọi \(n\inℕ\).

 Với \(n=0\) thì \(2^{3n+2}\equiv4\left(mod7\right)\), luôn đúng.

 Giả sử khẳng định đúng đến \(n=k\), khi đó \(2^{3k+2}\equiv4\left(mod7\right)\). Ta cần chứng minh khẳng định đúng với \(n=k+1\). Thật vậy, ta có \(2^{3\left(k+1\right)+2}=2^{3k+5}=8.2^{3k+2}\). Do \(2^{3k+2}\equiv4\left(mod7\right)\) nên đặt \(2^{3k+2}=7a+4\left(a\inℕ\right)\). Từ đó \(2^{3\left(k+1\right)+2}=8.2^{3k+2}=8\left(7a+4\right)=56a+32\). Do \(56a\equiv0\left(mo\text{d}7\right)\) và \(32\equiv4\left(mod7\right)\), suy ra \(56a+32\equiv4\left(mod7\right)\). Do vậy, \(2^{3\left(k+1\right)+2}\equiv4\left(mod7\right)\), vậy khẳng định đúng với \(n=k+1\) \(\Rightarrow2^{3n+2}\equiv4\left(mod7\right),\forall n\inℕ\). Lại có \(2015\equiv-1\left(mod7\right)\)  nên \(2^{3n+2}+2015\equiv3\left(mod7\right),\forall n\inℕ\).

30 tháng 11 2018

Ta có

M   =   101 n + 1   –   101 n   =   101 n . 101   –   101 n =   101 n ( 101   –   1 )   =   101 n . 100

 

Suy ra M có hai chữ số tận cùng là 00.

Đáp án cần chọn là: A

10 tháng 8 2018

4/ Gọi số HS là a (a thuộc N, 300 < a < 400)

Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS  hay   a : 12, 15, 18 dư 9    => (a - 9) chia hết cho 12, 15, 18  => a - 9 là BC(12,15,18)

12 = 2 mũ 2 x 3             ;                 15 = 3 x 5             ;                        18 = 2 x 3 mũ 2

Thừa số nguyên tố chung và riêng: 2, 3, 5

BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180

=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }

=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }

Mà 300 < a < 400   => a - 9 = 360

                                      a = 360 + 9

                                      a = 369

22 tháng 1 2017

Số dư là 0