Tìm tất cả các giá trị thực của m để hàm số y = cos x − 1 cos x − m đồng biến trên 0 ; π 2 .
A. m ≥ 1.
B. m > 1.
C. − 1 ≤ m ≤ 1.
D. m < 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Tập xác định:D= R. Ta có:y ‘= m-3 + (2m+1).sinx
Hàm số nghịch biến trên R
Trường hợp 1: m= -1/ 2 ; ta có 0 ≤ 7 2 ∀ x ∈ ℝ
Vậy hàm số luôn nghịch biến trên R.
Trường hợp 2: m< -1/ 2 ; ta có
Trường hợp 3:m > -1/2 ; ta có:
Vậy - 4 ≤ m ≤ 2 3
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
+) Điều kiện tanx ≠ m
Điều kiện cần để hàm số đồng biến trên (0; π/4) là m ∉ (0;1)
+) đạo hàm:
y ' = ( tan 2 x + 1 ) ( 2 - m ) ( tan x - m ) 2 = 2 - m cos 2 x . ( tan x - m ) 2
+) Ta thấy:
1 cos 2 x . ( tan x - m ) 2 > 0 ; ∀ m ∉ ( 0 ; 1 )
+) Để hàm số đồng biến trên (0; π/4)
⇔ y ' > 0 m ∉ ( 0 ; 1 ) ⇔ - m + 2 > 0 m ≤ 0 ; m ≥ 1 ⇔ m ≤ 0 h o ặ c 1 ≤ m < 2
Chọn D.
Đáp án B
Đặt ẩn phụ, tìm điều kiện của ẩn phụ, xét hàm.
Khi m=1 ta có: y=1 là hàm hằng nên m=1 không thỏa mãn.
Khi m ≠ 1 . Đặt t = cos x . Vì x ∈ 0 ; π 2 nên t ∈ 0 ; 1
Xét hàm y = t − 1 t − m có y ' = t − m − t + 1 t − m 2 = 1 − m t − m 2 . .
Để hàm số đã cho đồng biến trên 0 ; π 2 thì hàm số y = t − 1 t − m nghịch biến trên 0 ; 1
⇔ 1 − m < 0 1 < 1 − m 1 − m < 0 ⇔ m > 1 m < 0 m > 1 ⇔ m > 1.