K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2019

6 tháng 6 2017

14 tháng 3 2018

Chọn C

8 tháng 4 2017

Đáp án B

29 tháng 4 2016

Ta có : \(y'=-\frac{1}{\left(x-1\right)^2};x\ne1\)

Giao điểm cả 2 đường tiệm cận là I(1;2)

Gọi \(M\left(x_0;2+\frac{1}{x_0-1}\right)\) là tiếp điểm. Khi đó hệ số góc của tiếp tuyến \(\Delta\) tại M là \(k_1=-\frac{1}{\left(x_0-1\right)^2}\)

Ta có \(\overrightarrow{IM}\left(x_0-1;\frac{1}{x_0-1}\right)\) nên đường thẳng IM có hệ số góc \(k_2=\frac{1}{\left(x_0-1\right)^2}\)

\(IM\perp\Delta\Leftrightarrow k_1k_2=-1\Leftrightarrow x_0=0;x_0=2\)

Vậy có 2 điểm cần tìm là : \(M_1\left(0;1\right);M_2\left(2;3\right)\)

21 tháng 5 2020

Tại s k2 có hệ số góc là 1/(x-1)^2 vậy

27 tháng 6 2019

Đáp án D

S = 1 2 A B . D E = 1 2 A B 2 . Do đó hình vuông có diện tích nhỏ nhất khi AB là phân giác của góc giữa 2 đường tiệm cận. Phương trình A B : y = x . Hoành độ A, B là nghiệm của phương trình

x + 1 x − 1 = x ⇔ ⇔ x 2 − 2 x − 1 = 0 ⇒ A 1 − 2 ; 1 − 2 B 1 + 2 ; 1 + 2 ⇒ A B = 4

Vậy S min = 1 2 .4 2 = 8 .

24 tháng 8 2018

Đáp án B

Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .

Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒  Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.

Tiệm cận đứng: x=3; tiệm cận ngang:  y=1. Đồ thị hàm số nhận giao điểm   I 3 ; 1  của hai đường tiệm cận làm tâm đối xứng.

Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4  đúng và chọn ngay A.

Tuy nhiên đây là phương án sai.

Phân tích sai lầm:

Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3  và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.

Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.

Mệnh đề 3 , 4  đúng.

27 tháng 10 2017

3 tháng 5 2017

Đáp án D

23 tháng 3 2019

Giao điểm của hai đường tiệm cận là I ( -1;2 )

y = 2 x - 1 x + 1   ⇒ y ' = 3 x + 1 2   ⇒ PTTT tại  M x 0 , y 0 là

( d )   y = 3 x 0 + 1 2 x - x 0 + 2 x 0 - 1 x 0 + 1

Giao của (d) với TCD x = -1 là A - 1 ; 2 x 0 - 4 x 0 - 1 , Giao của (d) với TCD B 2 x 0 + 1 ; 2

A B 2 + I B 2 = 40   ⇔ 2 - 2 x 0 - 4 x 0 - 1 2 + - 2 x 0 - 2 2 = 40

⇔ 36 x 0 + 1 2 + 4 x 0 + 1 2 = 40

x 0 + 1 4 - 10 x 0 + 1 2 + 9 = 0 ⇔ x 0 + 1 2 = 1 x 0 + 1 2 = 9 ⇒ x 0 = 2 x 0 > 0 ⇒ y 0 = - 1 ⇒ x 0 y 0 = 2

Đáp án cần chọn là D