Tìm x,y biết \(\text{|}2x-6\text{|}+\text{|}5+y\text{|}\le0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|x-3\right|^{2014}\ge0;\left|6+2y\right|^{2015}\ge0\)
\(\Rightarrow\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0\)
Mà theo đề: \(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\le0\)
=> \(\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}=0\)
=> \(\left|x-3\right|=\left|6+2y\right|=0\)
=> \(x-3=6+2y=0\)
=> \(x=3;y=-3\).
\(\text{Ta có:}\left|2x+4\right|\ge0;\left|y+5\right|\ge0\)
Mà \(-\left|2x+4\right|-\left|y+5\right|\ge0\)
=> \(\left|2x+4\right|=\left|y+5\right|=0\)
=> \(2x+4=y+5=0\)
=> \(x=-2;y=-5\)
b) \(2x^2+4y^2+z^2-4xy-2x-2z+5=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-2x+1\right)+\left(z^2-2z+1\right)+3=0\)
....
a) \(x^2+5y^2-4xy+6y+9=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y=2.\left(-3\right)=-6\\y=-3\end{matrix}\right.\)
Vậy : \(\left(x,y\right)=\left(-6,-3\right)\)
a) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x+y}{5+6}=\dfrac{44}{11}=4\)
=> x = 4.5 = 20.
=> y = 4.6 = 24.
b) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{3x-y}{15-6}=\dfrac{63}{9}=7\)
=> x = 7.5 = 35.
=> y = 7.6 = 42.
c) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x.y}{5.6}=\dfrac{270}{30}=9\)
=> x = 9.5 = 45.
=> y = 9.6 = 54.
d) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x.y}{5.6}=\dfrac{120}{30}=4\)
=> x = 4.5 = 20.
=> y = 4.6 = 24.
câu c,d ở bạn trên làm sai rồi nhé
\(c,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{6}=k\Rightarrow x=5k;y=6k\)
\(xy=270\Rightarrow30k^2=270\\ \Rightarrow k^2=9\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=15;y=18\\x=-15;y=-18\end{matrix}\right.\)
\(d,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{6}=k\Rightarrow x=5k;y=6k\)
\(xy=120\Rightarrow30k^2=120\\ \Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10;y=12\\x=-10;y=-12\end{matrix}\right.\)
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
a) Thay x + 3y - 2z vào biểu thức ta có:
\(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhua ta có:
\(\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = \dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\)
=\(\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)
=\(\dfrac{36 + 9}{9}\) = 5
=> \(\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6
=>
=>
Vậy ...
(Bạn dựa theo cách này và lm những bài tiếp nhé!)
|2x-6| > 0 với mọi x
|5+y| > 0 với mọi y
=>|2x-6|+|5+y| > 0 với mọi x,y
mà theo đề:|2x-6|+|5+y| < 0
=>|2x-6|=|5+y|=0
+)2x-6=0=>2x=6=>x=3
+)5+y=0=>y=-5
vậy x=3;y=-5
x=3;y=-5
nhé.