K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

Đáp án A

 

 

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

19 tháng 6 2018

Đáp án C

Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)

suy ra  S H ⊥ A B C

Ta có

  S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C   = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12

30 tháng 9 2019

Đáp án C

5 tháng 2 2017

Đáp án D

Gọi H là trung điểm của AD, khi đó từ giả thiết ta có SH  (ABCD). Ta có:

23 tháng 10 2019

ĐÁP ÁN: B

6 tháng 9 2019

Đáp án là C


18 tháng 11 2017

Đáp án C

9 tháng 12 2019

Chọn A

 

Gọi I, K lần lượt là trung điểm của AB và CD và H là hình chiếu của S trên IK. Khi đó, ta có:

16 tháng 3 2019

Chọn đáp án D

Gọi H là trung điểm của AB. Từ giả thiết ta có S H ⊥ A B C D  

Suy ra

⇒ S H C vuông cân tại H.

Do ∆ B H C  vuông tại H nên

 

⇒ S H = H C = a 5 2  

Thể tích khối chóp V S . A B C D = 1 3 S H . S A B C D = a 3 5 6 đ v t t  là

 

27 tháng 9 2021

HC tính sai r ạ