K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

d   ∩   O y   =   B ⇒     x B   =   0 ⇒     y B   =   m   − 1   ⇒   B   0 ;   m   − 1   ⇒   O B   =   m   − 1   =   m   −   1 d   ∩   O x   =   A   ⇒   y A   =   0   ⇒ m x A   +   m   −   1   =   0   ⇔ x A = 1 − m m m ≠ 0      

  ⇒ A 1 − m m ; 0 ⇒ O A = 1 − m m

Tam giác OAB vuông cân tại O

  O A   =   O B ⇔ = 1 − m m ⇔ m − 1 = 1 − m m m − 1 = m − 1 m ⇔ m 2 = 1 m − 1 1 − 1 m = 0     | m   –   1 |    

  ⇔ m = ± 1 m − 1 2 m = 0 ⇔ m = ± 1

Đáp án cần chọn là: D

29 tháng 2

Đề cho sai, vì khi m = 1 thì ba điểm A, B, O trùng nhau, đáp án đúng là m = -1.

Tọa độ A là;

y=0 và mx+m-1=0

=>x=(-m+1)/m và y=0

=>OA=|m-1|/|m|

Tọa độ B là;

x=0 và y=m-1

=>OB=|m-1|

ΔOAB vuông cân tại O

=>|m-1|=|m-1|/|m|

=>|m-1|(1-1/|m|)=0

=>m=1;m=-1

24 tháng 1 2020

\(a)\) Hàm số \(y=\left(2-3m\right)x+2m-5\)đồng biến 

\(\Leftrightarrow2-3m>0\)

\(\Leftrightarrow3m< 2\)

\(\Leftrightarrow m< \frac{2}{3}\)

Vậy với giá trị \(m< \frac{2}{3}\)thì hàm số trên đồng biến

\(b)\)  \(\left(d\right)\)đi qua gốc tọa độ

\(\Leftrightarrow\)Hàm số \(y=\left(2-3m\right)x+2m-5\)có dạng \(y=ax\)

\(\Leftrightarrow2m-5=0\)

\(\Leftrightarrow2m=5\)

\(\Leftrightarrow m=\frac{5}{2}\)

Vậy \(m=\frac{5}{2}\)

\(c)\) Vì đths đi qua \(A\left(1;1\right)\)

\(\Rightarrow\)Thay \(x=1;y=1\)vào hàm số \(y=\left(2-3m\right)x+2m-5\)

Có: \(\left(2-3m\right).1+2m-5=1\)

\(\Leftrightarrow2-3m+2m-5=1\)

\(\Leftrightarrow-3-m=1\)

\(\Leftrightarrow m=-4\)

Vậy \(m=-4\)

\(d)\) Pt hoành độ giao điểm thỏa mãn:

\(2x-1=x-2\)

\(\Leftrightarrow x=-1\)

\(\Leftrightarrow y=x-2\)

\(\Leftrightarrow y=-3\)

Để \(\left(d\right);y=2x-1;y=x-2\)đồng quy thì:

\(A\left(-1;-3\right)\in d\)

\(\Leftrightarrow\left(2-3m\right)\left(-1\right)+2m-5=-3\)

\(\Leftrightarrow-2+3m+2m-5=-3\)

\(\Leftrightarrow-7+5m=-3\)

\(\Leftrightarrow5m=4\)

\(\Leftrightarrow m=\frac{4}{5}\)

\(e)\) Vì \(\left(d\right)\)cắt trục \(Oy\)tại điểm có tung độ \(=-1\)

\(\Rightarrow\left(0;-1\right)\in\left(d\right)\)

Thay \(x=0;y=-1\)vào hàm số

Có: \(\left(2-3m\right).0+2m-5=-1\)

\(\Leftrightarrow2m-5=-1\)

\(\Leftrightarrow2m=4\)

\(\Leftrightarrow m=2\)

Vậy \(m=2\)

\(f)\) Đths \(y=\left(2-3m\right)x+2m-5\)đi qua gốc tọa độ 

\(\Leftrightarrow2m-5=0\)

\(\Leftrightarrow2m=5\)

\(\Leftrightarrow m=\frac{5}{2}\)

Mà đths \(y=\left(2-3m\right)x+2m-5\)\(\in\)góc phần tư \(\left(II\right),\left(IV\right)\)

\(\Leftrightarrow2-3m< 0\)

\(\Leftrightarrow3m>2\)

\(\Leftrightarrow m>\frac{2}{3}\)

Ta có \(m=\frac{5}{2}\)(tmđk \(m>\frac{2}{3}\))

Vậy \(m=\frac{5}{2}\)

26 tháng 10 2018

mk chỉ cho cách lm :

a) thế điềm \(O\left(0;0\right)\) vào d \(\Leftrightarrow x=0;y=0\) --> m

b) thế điểm \(\left(3;5\right)\) vào d \(\Leftrightarrow x=3;y=5\) --> m

c) thế \(x=0;y=0\) rồi biến đổi đẳng thức d

rồi tìm điều kiện để đẳng thức đó không đúng

d) ta có đường thẳng \(d\backslash\backslash Ox\) có dạng \(y=a\)\(d\backslash\backslash Oy\) có dạng \(x=b\)

--> \(d\backslash\backslash Ox\) \(\Leftrightarrow\) \(2m-1=0\) và --> \(d\backslash\backslash Oy\) \(\Leftrightarrow\) \(m-2=0\)

--> ...

a: Thay x=3 và y=8 vào (d), ta được:

3(m-1)+2m-1=8

=>5m-4=8

=>5m=12

=>m=12/5

b: Tọa độ A là:

y=0 và x=(-2m+1)/(m-1)

=>OA=|2m-1/m-1|

Tọa độ B là:\

x=0 và y=2m-1

=>OB=|2m-1|

Để ΔOAB vuông cân tại O thì OA=OB

=>|2m-1|(1/|m-1|-1)=0

=>m=1/2 hoặc m=2 hoặc m=0

10 tháng 10 2023

a) \(y=\left(1-m\right)x+m+2\left(d\right)\)

\(y=2x-1\left(d'\right)\)

\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}1-m=2\\m+2\ne-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-3\end{matrix}\right.\)

\(\Leftrightarrow m=-1\)

Vậy với \(m=-1\) để \(\left(d\right)//\left(d'\right)\)

b) \(\left(d\right)\cap\left(Ox\right)=A\left(x;0\right)\)

\(\Leftrightarrow\left(1-m\right)x+m+2=0\)

\(\Leftrightarrow x=\dfrac{m-1}{m+2}\)

\(\Rightarrow A\left(\dfrac{m-1}{m+2};0\right)\)

\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m-1}{m+2}\right)^2}=\left|\dfrac{m-1}{m+2}\right|\)

\(\left(d\right)\cap\left(Oy\right)=B\left(0;y\right)\)

\(\Leftrightarrow\left(1-m\right).0+m+2=y\)

\(\Leftrightarrow y=m+2\)

\(\Rightarrow B\left(0;m+2\right)\)

\(\Rightarrow OB=\sqrt[]{\left(m+2\right)^2}=\left|m+2\right|\)

Để \(\Delta OAB\) là \(\Delta\) vuông cân khi và chỉ khi

\(\left|\dfrac{m-1}{m+2}\right|=\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{m-1}{m+2}=m+2\\\dfrac{m-1}{m+2}=-\left(m+2\right)\end{matrix}\right.\) \(\left(m\ne-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(m+2\right)^2=m-1\\\left(m+2\right)^2=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2+2m+4=m-1\\m^2+2m+4=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2+m+5=0\left(1\right)\\m^2+3m+3=0\left(2\right)\end{matrix}\right.\)

Giải \(pt\left(1\right):\Delta=1-20=-19< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm

Giải \(pt\left(2\right):\Delta=9-12=-3< 0\)

\(\Rightarrow\left(2\right)\) vô nghiệm

Vậy không có giá trị nào của \(m\) thỏa mãn đề bài