K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2020

x+y=a; xy=b khi đó ta có hệ

a+b=m+1=ab+1=> (a-1)(b-1)=0

đến đây a=1 hoặc b=1

a=1 thì: b=m

b=1 thì: a=m

18 tháng 6 2019

cộng vế (1) và (2) đc: \(\left(x+y\right)^2+2\left(x+y\right)=2m+6\) (*) 

Xem (*) là phương trình bậc hai 1 ẩn a = (x+y) 

(*) có nghiệm khi \(1+2m+6\ge0\Leftrightarrow2m+7\ge0\Leftrightarrow m\ge-\frac{7}{2}\)

khi đó \(a=-1\pm\sqrt{2m+7}\Rightarrow x+y=-1\pm\sqrt{2m+7}\)

vậy hệ pt đã cho có nghiệm \(x=-1\pm\sqrt{2m+7}-y\) với mọi \(m\ge-\frac{7}{2}\)

8 tháng 7 2017

Hệ trên tương đương với

\(\hept{\begin{cases}x+y+xy=m\\xy\left(x+y\right)=3m-9\end{cases}}\)  (1)

Đặt  \(S=x+y;P=xy\)

\(\hept{\begin{cases}S+P=m\\SP=3m-9\end{cases}}\)

Do đó S và P là 2 nghiệm của pt  \(t^2-mt+3m-9=0\)   (2)

Để (1) có 2 nghiệm x, y thì (2) phải có nghiệm t là S và P

Ta có  \(\Delta_t=\left(-m\right)^2-4.1.\left(3m-9\right)=m^2-12m+36=\left(m-6\right)^2\ge0\)

Như vậy với mọi m thì (2) luôn có nghiệm

Hay với mọi m thì (1) luôn có nghiệm

22 tháng 5 2018

súc vật tự đăng tự trả lời

2 tháng 11 2016

Xét pt đầu : \(x+my=m+1\Leftrightarrow x=m+1-my\) thay vào pt còn lại : 

\(m\left(m+1-my\right)+y=3m-1\)

\(\Leftrightarrow y\left(1-m^2\right)=-m^2+2m-1\)

Nếu \(m=1\) thì pt có dạng 0.y = 0 => Vô số nghiệm.

Nếu m = -1 thì pt có dạng 0.x = -4 => vô nghiệm.

Xét với \(m\ne1\) và \(m\ne-1\) thì pt có nghiệm \(y=\frac{-\left(m-1\right)^2}{\left(1-m\right)\left(1+m\right)}=\frac{m-1}{m+1}\) 

\(\Rightarrow x=m+1-m\left(\frac{m-1}{m+1}\right)=m+1-\frac{m^2-m}{m+1}=\frac{m^2+2m+1-m^2+m}{m+1}=\frac{3m+1}{m+1}\)

Xét \(xy=\frac{\left(m-1\right)\left(3m+1\right)}{\left(m+1\right)^2}=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)

Đặt \(t=m+1\) thì \(m=t-1\) thay vào biểu thức trên được

\(\frac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\frac{3t^2-8t+4}{t^2}=\frac{4}{t^2}-\frac{8}{t}+3\)

Lại đặt \(a=\frac{1}{t}\) thì : \(4a^2-8a+3=4\left(a-1\right)^2-1\ge-1\)

Suy ra \(xy\ge-1\) . Dấu đẳng thức xảy ra khi \(a=1\Leftrightarrow t=1\Leftrightarrow m=0\)

Vậy với m = 0 thì xy đạt giá trị nhỏ nhất bằng -1