Tìm a, b biết 2BCNN(a,b) + ƯCLN(a,b)=174 và 2a+3b=108
\(a,b\inℕ\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(a,b) = d => a = m.d, b = n.d (với (m,n) = 1)
=> BCNN(a,b) = m.n.d
=> 2.m.d + 3.n.d = 108 và 5.d + 2.m.n.d = 174
=> (2m + 3n).d = 108 và d(5 + 2mn) = 174
=> d là UC(108;174) => d là ước của 6
+) d = 6 => 2m + 3n = 18, 5 + 2mn = 29 => 2m + 3n = 18, 2mn = 24 => 2m + 3n = 18, mn = 12 => m = 2, n = 4 => a,b
tương tự với các trường hợp còn lại
Không mất tính tổng quát, giả sử \(a\ge b\). Khi đó ta cần chứng minh bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên a, b khác 0. Khi đó ta có \(ab=\left(a,b\right)\left[a,b\right]\). Trong đó kí hiệu \(\left(a,b\right)\) và \(\left[a,b\right]\) lần lượt là ƯCLN và BCNN của 2 số a và b.
Chứng minh: Giả sử \(a=p_1^{n_1}p_2^{n_2}...p_k^{n_k}\) và \(b=p_1^{m_1}p_2^{m_2}...p_k^{m_k}\) với \(p_1,p_2,...,p_k\) là các số nguyên tố phân biệt và \(n_1,n_2,...,n_k,m_1,m_2,...,m_k\) là các số tự nhiên. Ta có
\(\left(a,b\right)=p_1^{min\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}}\)
và \(\left[a,b\right]=p_1^{max\left\{n_1,m_1\right\}}p_2^{max\left\{n_2,m_2\right\}}...p_k^{max\left\{n_k,m_k\right\}}\)
\(\Rightarrow\left(a,b\right)\left[a,b\right]=p_1^{min\left\{n_1,m_1\right\}+max\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}+max\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}+max\left\{n_k,m_k\right\}}\)
\(=p_1^{m_1+n_1}.p_2^{m_2+n_2}...p_k^{n_k+m_k}\)
\(=ab\)
Vậy bổ đề 1 được chứng minh. Áp dụng bổ đề này cho 2 số a, b, ta có \(ab=\left[a,b\right]\left(a,b\right)=300.15=4500\)
Do \(a\ge b\) \(\Rightarrow4500=ab\ge b^2\Leftrightarrow b\le67\). Mà 15 là ước của b nên \(b\in\left\{15,30,45,60\right\}\)
\(b=15\) thì \(a=300\), thỏa mãn.
\(b=30\) thì \(a=150\), không thỏa.
\(b=45\) thì \(a=100\), không thỏa.
\(b=60\) thì \(a=75\), thỏa mãn.
Vậy \(\left(a,b\right)\in\left\{\left(15,300\right);\left(300,15\right);\left(60,75\right);\left(75,60\right)\right\}\) là các cặp số a, b thỏa mãn yêu cầu bài toán.