Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow12a^2-4b^2=3a^2+3b^2\)
\(\Leftrightarrow9a^2=7b^2\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{7}{9}\)
hay \(\dfrac{a}{b}\in\left\{\dfrac{\sqrt{7}}{3};-\dfrac{\sqrt{7}}{3}\right\}\)
\(\dfrac{3a^2-b^2}{a^2+b^2}=\dfrac{3}{4}\)
\(\Leftrightarrow4.\left(3a^2-b^2\right)=3\left(a^2+b^2\right)\)
\(\Leftrightarrow12a^2-4b^2=3a^2+3b^2\)
\(\Leftrightarrow12a^2-3a^2=3b^2+4b^2\)
\(\Leftrightarrow9a^2=7b^2\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{7}{9}\)
\(\text{hoặc }\dfrac{a}{b}=\pm\dfrac{\sqrt{7}}{3}\)
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)
\(\frac{3a^2-b^2}{a^2+b^2}\)=\(\frac{3}{4}\)
=>4.(3a2-b=2)=3.(a2+b2)
4.3a2-4.b2=3.a2+3.b2
12a2-4b2=3a2+3b2
12a2-3a2=4b2+3b2
9a2=7b2
\(\frac{a^2}{b^2}\)=\(\frac{7}{9}\)
=>\(\frac{a}{b}\)=\(\sqrt{\frac{7}{9}}\)
đặt a/b=t
chia cả tử mấu cho b^2
\(\Leftrightarrow\frac{3t^2-1}{t^2+1}=\frac{3}{4}\)\(12t^2-4=3t^2+3\Rightarrow9t^2=7\Rightarrow\orbr{\begin{cases}\frac{a}{b}=t=\frac{\sqrt{7}}{3}\\\frac{a}{b}=t=\frac{-\sqrt{7}}{3}\end{cases}}\)
a/b=