tìm số nguyên x để phân thức sau có giá trị là số nguyên 7/x^2-x+1
mik cần gấp mong các bạn giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\frac{x^3+x-2}{x^3-3x^2-2x-8}\)
\(=\frac{x^3-1+x-1}{x^3-4x^2+x^2-4x+2x-8}\)
\(=\frac{\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)}{x^2\left(x-4\right)+x\left(x-4\right)+2\left(x-4\right)}\)
\(=\frac{\left(x-1\right)\left(x^2+x+1+1\right)}{\left(x^2+x+2\right)\left(x-4\right)}\)
\(=\frac{\left(x-1\right)\left(x^2+x+2\right)}{\left(x^2+x+2\right)\left(x-4\right)}\)
\(=\frac{x-1}{x-4}\)
\(=\frac{\left(x-4\right)+3}{x-4}=1+\frac{3}{x-4}\)
Để \(\frac{x^3+x-2}{x^3-3x^2-2x-8}\in Z\) <=> \(\frac{3}{x-4}\in Z\)
<=> 3 \(⋮\)x - 4
<=> x - 4 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng:
x - 4 | 1 | -1 | 3 | -3 |
x | 5 | 3 | 7 | 1 |
Vậy ...
Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.
Mà $x-2< x+4$ nên $x-2=1$
$\Rightarrow x=3$
Thay vào $A$ thì $A=7$ là snt (thỏa mãn)
b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$
Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:
$x-2<0< x+4$
$\Rightarrow -4< x< 2$
$x$ nguyên nên $x=-3,-2,-1,0,1$
Để a xác định thì :\(x^2-2x\)khác 0
Nên \(x\left(x-2\right)\)khác 0
\(\Rightarrow x\)khacs0 và x khác 2
\(Ta\)\(có:\)\(A=\frac{x^2-4}{x^2-2x}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x+2}{x}\)
Với x khác 0, x khác 2; x thuộc Z nên x+2 thuộc Z
Lại có :\(\frac{x+2}{x}=\frac{x}{x}+\frac{2}{x}=1+\frac{2}{x}\)
Để A thuộc Z thì \(x\varepsilon\)Ư(2)
Mà Ư(2) là 2 và -2
Vậy x=2 và x=-2 thì A thuộc Z
Chúc bạn học tốt nhé!
Đề bài bạn viết hơi khó hiểu, nhưng có thể tạm giải như sau:
Lời giải:
$A=\frac{4x^2}{x+1}=\frac{4(x^2-1)+4}{x+1}=\frac{4(x-1)(x+1)+4}{x+1}$
$=4(x-1)+\frac{4}{x+1}$
Với $x$ nguyên thì:
$A\in\mathbb{Z}\Leftrightarrow 4(x-1)+\frac{4}{x+1}\in\mathbb{Z}$
$\Leftrightarrow \frac{4}{x+1}\in\mathbb{Z}$
$\Leftrightarrow x+1$ là ước của $4$
$\Rightarrow x+1\in\left\{\pm 1;\pm 2;\pm 4\right\}$
$\Rightarrow x\in\left\{-2; 0; -3; 1; 3; -5\right\}$
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
=[3x(x2-16)+44(x2-16)+44.16+x-4+3]/(x-4)
=3x(x+4)+44(x+4)+1+(44.16+3)/(x-4)
để là giá trị nguyên thì 44.16+3=707 chia hết cho x-4
vậy x-4 phải là ước của 707
707=7.101 => x-4=7 hoặc x-4=101
=>x =11 hoăc x=105
để \(\frac{7}{x^2-x+1}\in Z\Leftrightarrow x^2-x+1\inƯ_7=\left\{\pm1;\pm7\right\}\)
nếu \(x^2-x+1=-7\Leftrightarrow x^2-x+8=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=-1\Leftrightarrow x^2-x +2=0\left(vo nghiem\right)\)
nếu \(x^2-x+1=1\Leftrightarrow x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases} }\)
nếu \(x^2-x+1=7\Leftrightarrow x^2-x-6=0\Leftrightarrow\hept{\begin{cases}x=3\\x=-2\end{cases} }\)
vậy \(x\in\left\{-2,0,1,3\right\}\)
Để \(\frac{7}{x^2-x+1}\)ta có : \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
hay \(7⋮\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Xét từng trường hợp :
TH1 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=\pm\frac{1}{2}\)
\(\Leftrightarrow x_1=\frac{1}{2}+\frac{1}{2}=1;x_2=-\frac{1}{2}+\frac{1}{2}=0\)( chọn )
TH2 : \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=-1\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{7}{4}\)ko thỏa mãn
tương tự 2 trường hợp còn lại