Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có:
\(DE//BC\Rightarrow\left\{{}\begin{matrix}\widehat{ADE}=\widehat{ABC}\\\widehat{AED}=\widehat{ACB}\end{matrix}\right.\) (đồng vị)
Mà \(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)
\(\Rightarrow\widehat{ADE}=\widehat{AED}\) => Tam giác ADE cân tại A
b) Xét tam giác ABE và tam giác ACD có:
\(AB=AC\)(Tam giác ABC cân tại A)
\(\widehat{BAC}\) chung
\(AD=AE\) (Tam giác ADE cân tại A)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân tại A)
\(\Rightarrow\widehat{ABC}-\widehat{ABE}=\widehat{ACB}-\widehat{ACD}\Rightarrow\widehat{OBC}=\widehat{OCB}\)
=> Tam giác OBC cân tại O
đề sai, đường thẳng song song với BC cắt AB và AC lần lượt ở B và E là sao ???? chẳng lẻ E trùng với C
Tạm thời cho đường thẳng song song với BC cắ AB và AC lần lượt ở D và E thì bài toán giải như sau( tự vẽ hình nha)
a, Vì t/giác ABC cân tại A nên góc ABC=ACB
DE song song BC nên góc ADE= ABC ; AED=ACB mà ABC = ACB (cmt) => ADE=AED => tam giác ADE là tam giác cân.
b,vì ADE là tam giác cân nên AD=AE => BD=EC
Xét 2 tam giác BDC và tam giác EBC có
BD=EC (cmt)
BC: cạnh chung
góc DBC=ECB
=> tam giác DBC= tam giác ECB( c-g-c)
=>góc DCB= góc EBC ( 2 góc tương ứng)
=> tam giác OBC là tam giác cân.
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
a: Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
Có hình ko bạn
Nhìn như này loạn quá
Với lại cái đề nó cũng dài quá nữa cơ
Nhìn muốn xỉu luôn ý.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
ta có tam giac ABC cân=>góc B=góc C . BÉ//D=>góc EBD= góc D1( so le trong ). Mà góc D=gốc FDC( đối đỉnh) <=>góc EBD=góc FDC .Mà góc B = góc C . Nên góc C=góc FDC. tam giác FCD cân tại F
tam giác EBD nè : ta có góc BED=góc EDF( so le trong) , góc CFD= góc EDF (so le trong ) <=> góc BED= góc EDF Nên: góc BED= góc CFD. và góc B= góc C . Nên góc EDB=góc FDC ( đ/l trong 1 tam giác ).Mà góc FDC=góc B. Nên góc B=góc EDB. Vậy tam giác EBD cân tại E
a) Xét ΔABC có
D∈AB(gt)
E∈AC(gt)
Do đó: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(Hệ quả của Định lí Ta lét)
⇒\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
mà \(\dfrac{AB}{AC}=1\)(AB=AC)
nên \(\dfrac{AD}{AE}=1\)
hay AD=AE
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
Định Lý Py-ta-lét chứ