Giải phương trình nghiệm nguyên sau :
\(1+x+x^2+x^3=2^y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)
=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)
\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)
=>(x-2)y-2x=0
=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )
=>x=2
=>y-2=0
=>y=2
vậy x=y=2
Các bn giải theo phương pháp sử dụng đk có nghiệm của phương trình bậc hai giúp mk ạ!
mình có 1 cách khác nữa:
vì y ∈ Z nên \(\dfrac{x^2-x+1}{x^2+x+1}\) ∈ Z
=>x2-x+1⋮x2+x+1=> x2+x+1 -2x ⋮x2+x+1
=>2x⋮x2+x+1 (1)
Xét hiệu (x2+x+1)-2x=(x-\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)>0
=>x2+x+1 > 2x (2)
Từ (1) và (2) kết hợp với 2x và x2+x+1 ∈ Z
=> 2x =0 => x =0 => y=1
Vậy phương trình có nghiệm (x,y) là (0,1)
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....