tính\(M=\frac{x^2-2xy}{x^2+y^2}\left(x,y\ne0\right)\) biết \(3x-y=3z,2x+y=7z\)
giúp mik với mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)
\(\Leftrightarrow3x-y+2x+y=10z\)
\(\Leftrightarrow5x=10z\)
hay x=2z
Thay x=2z vào biểu thức 3x-y=3z, ta được:
\(3\cdot2z-y=3z\)
\(\Leftrightarrow6z-y=3z\)
hay y=3z
Thay x=2z và y=3z vào biểu thức \(M=\dfrac{x^2-2xy}{x^2+y^2}\), ta được:
\(M=\dfrac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{13z^2}=\dfrac{-8z^2}{13z^2}=\dfrac{-8}{13}\)
Vậy: \(M=\dfrac{-8}{13}\)
\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5x=10z\\3x-y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\3.2z-y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=3.2z-3z=6z-3z=3z\end{matrix}\right.\)
Có: \(M=\dfrac{x^2-2xy}{x^2+y^2}=\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{4z^2+9z^2}=\dfrac{-8z^2}{13z^2}==-\dfrac{8}{13}\)
ta có 5x=10z=> x=2z=> y=3z
Tháy vào, ta có \(M=\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8z^2}{13z^2}=-\frac{8}{13}\)
Ta có:
\(3x-y+2x+y=3z+7z\)
\(5x=10z\)
\(x=2z\)
thay:\(4z+y=7z\) \(\Rightarrow y=3z\)
Thay vào M ta đc:M=\(\frac{4z^2-12z^2}{4z^2+9z^2}\) =\(\frac{-8z^2}{13z^2}=\frac{-8}{13}\)
vậy\(M=\frac{-8}{13}\) nếu\(3x-y=3z;2x+y=7z\)
\(3x-y=3z\Rightarrow-y=3z-3x\Rightarrow y=3x-3z\)
\(2x+y=7z\Rightarrow y=7z-2x\)\(\Rightarrow3x-3z=7z-2x=y\Rightarrow3x-3z-7z+2x=5x-10z=0\Rightarrow x-2z=0\Rightarrow x=2z\)
\(2x+y=7z\Rightarrow2\cdot2z+y=7z\Rightarrow4z+y=7z\Rightarrow y=3z\)
\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\frac{4z^2-12z^2}{4z^2+9z^2}=-\frac{8z^2}{13z^2}=-\frac{8}{13}\)
a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)
\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)
\(=x^2+2xy^3-5xy^2-8z+6xy\)
b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(2x-y\right)\left(2x+y\right)\)
\(=\left(2x\right)^2-y^2\)
\(=4x^2-y^2\)
d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)
\(=6xy+15x-2y^2-5y-64xy\)
\(=-58xy+15x-2y^2-5y\)
Ta có:2x+y=z−38⇒2x+y−z=−382x+y=z−38⇒2x+y−z=−38
Vì 3x=4y=5x−3x−4y3x=4y=5x−3x−4y nên 3x=5z−3x−3x3x=5z−3x−3x
⇒3x−5z−6x⇒3x−5z−6x
⇒9x=5z⇒9x=5z
⇒x5=z9⇒x20=z36⇒x5=z9⇒x20=z36(1)
Vì 3x=4y⇒x4=y3⇒x20=z153x=4y⇒x4=y3⇒x20=z15 (2)
Từ (1) và (2)⇒x20=y15=z36⇒x20=y15=z36
Áp dụng tính chất dãy tỉ số bằng nhau:
x20=y15=z36=2x+y−z2.20+15−36=−3819=−2x20=y15=z36=2x+y−z2.20+15−36=−3819=−2
x20=−2⇒x=20.(−2)=−40x20=−2⇒x=20.(−2)=−40
y15=−2⇒y=15.(−2)=−30y15=−2⇒y=15.(−2)=−30
z36=−2⇒z=36.(−2)=−72z36=−2⇒z=36.(−2)=−72
Vậy x=−40;y=−30;z=−72
\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)
Vậy pt có vô số nghiệm
\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)
Mấy câu rút gọn bạn quy đồng nha
Mình sửa lại đề cho đúng nhé
\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)
Thế vô M ta được
\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)
ta có hệ
\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\)cộng hai phương trình lại , ta có \(5x=10z\Rightarrow x=2z\Rightarrow y=3z\) thế vào M ta có
\(M=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=\frac{4-12}{4+9}=-\frac{8}{13}\)