\(\left\{{}\begin{matrix}u3+u6=-29\\u3.u11=25\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Bạn coi lại đề, vế phải sao lại \(102-2\), lớp 3 lớp 4 người ta cho kiểu này còn có lý, chứ lớp 11 chắc chẳng ai cho kiểu vầy cả, nó... ngớ ngẩn quá
b/ Giống câu bạn vừa đăng
a/ Đề vẫn giống cũ, kết quả rất xấu nên chắc chắn sai (vì các số hạng nguyên nên \(u_1\) và d đều phải nguyên, do đó nghiệm của pt phải đẹp)
b/ \(\left\{{}\begin{matrix}u_1+d-\left(u_1+2d\right)+u_1+4d=10\\u_1+3d+u_1+5d=26\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+3d=10\\2u_1+8d=26\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\)
\(\Rightarrow u_{10}=u_1+9d=1+9.3=28\)
c/ \(\left\{{}\begin{matrix}S_7=\frac{7\left(2u_1+6d\right)}{2}=63\\\left(u_1+3d\right)\left(u_1+5d\right)=117\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+3d=9\\u_1^2+8u_1d+15d^2=117\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1=9-3d\\u_1^2+8u_1d+15d^2=117\end{matrix}\right.\)
\(\Rightarrow\left(9-3d\right)^2+8d\left(9-3d\right)+15d^2-117=0\)
\(\Leftrightarrow18d-36=0\Rightarrow d=2\Rightarrow u_1=3\)
Đó, 2 bài sau đề đúng là kết quả đẹp liền
Tất cả các bài đều là dạng hệ đơn giản giống nhau, trừ câu l đề có vấn đề ra thì đều giải một cách đơn giản bằng phương pháp cộng đại số được, ko có gì khó cả.
Ví dụ câu a:
\(\left\{{}\begin{matrix}80x+81y=12,1\\x+y=0,15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}80x+81y=12,1\\-81x-81y=-12,15\end{matrix}\right.\)
Cộng hai pt lại:
\(-x=-\frac{1}{20}\Rightarrow x=\frac{1}{20}\)
Thay vào pt \(x+y=0,15\Rightarrow y=0,15-x=\frac{1}{10}\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\frac{1}{20};\frac{1}{10}\right)\)
Các câu khác làm tương tự
a) \(\left\{{}\begin{matrix}u_5=96\\u_7=384\end{matrix}\right.\)
\(u^2_6=u_5.u_7=96.384=36864\)
\(\Leftrightarrow u_6=192\)
\(q=\dfrac{u_7}{u_6}=\dfrac{384}{192}=2\)
\(u_5=u_1.q^4\)
\(\Leftrightarrow u_1=\dfrac{u_5}{q^4}=\dfrac{96}{2^4}=6\)
b) \(\left\{{}\begin{matrix}u_4-u_2=25\\u_3-u_1=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1.q^3-u_1.q=25\\u_1.q^2-u_1=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1.q\left(q^2-1\right)=25\left(1\right)\\u_1.\left(q^2-1\right)=50\left(2\right)\end{matrix}\right.\)
\(\left(1\right):\left(2\right)\Leftrightarrow q=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\left(2\right)\Leftrightarrow u_1=\dfrac{50}{q^2-1}=\dfrac{50}{\dfrac{1}{4}-1}=-\dfrac{200}{3}\)
a, \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-y\right)\left(x^2+y^2\right)=26\\\left(x-y\right)\left(x+y\right)^2=25\end{matrix}\right.\)
Trừ vế theo vế \(pt\left(1\right)\) cho \(pt\left(2\right)\) ta được:
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-2xy\right)=1\)
\(\Leftrightarrow\left(x-y\right)^3=1\)
\(\Leftrightarrow x-y=1\)
Khi đó hệ trở thành:
\(\left\{{}\begin{matrix}x^2+y^2=13\\\left(x+y\right)^2=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=13\\13+2xy=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=13\\2xy=12\end{matrix}\right.\)
Cộng vế theo vế 2 phương trình:
\(\left(x+y\right)^2=25\)
\(\Leftrightarrow x+y=\pm5\)
TH1: \(x+y=5\)
Ta có hệ: \(\left\{{}\begin{matrix}x-y=1\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
TH2: \(x+y=-5\)
Ta có hệ: \(\left\{{}\begin{matrix}x-y=1\\x+y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\y-y^2x-2y^2=-2\end{matrix}\right.\)
ĐK: \(y\ne0\)
\(\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\y-y^2x-2y^2=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+x-\dfrac{1}{y}=2\\\dfrac{1}{y}-x-2=-\dfrac{2}{y^2}\end{matrix}\right.\)
Đặt \(\dfrac{1}{y}=t\), hệ trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+x-t=2\\2t^2+t-x=2\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t+1\right)=0\)
\(\Leftrightarrow...\)
1: \(x\in\left(1;5\right)\cup\left(-\infty;-2\right)\)
2: x>1
4: \(x\in\left(-2;+\infty\right)\)
Cấp số cộng hay cấp số nhân vậy bạn ?
thiếu đề bài .