so sánh:
a) 536 và 1124
b) 32n và 23n
c) 19920 và 200315
d) 399 và 1121
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, $5^{3} =5\times5\times5=125$
$3^{5} =3\times3\times3=27$
$125>27=>5^{3}>3^{5}$
$3^{2}=3\times3=9$
$2^{3}=2\times2\times2=8$
$9>8=>3^{2}>2^{3}$
$2^{6} =2\times2\times2\times2\times2\times2=64$
$6^{2}=6\times6=36$
$64>36=>2^{6}>6^{2}$
b, $2015\times2017=2015\times(2016+1)=2015\times2016+2015$
$2016^{2}=2016\times2016=2016\times(2015+1)=2016\times2015+2016$
$2015\times2016+2015<2016\times2015+2016=>2015\times2017<2016^{2}$
c, $199^{20}=199^{4\times5}=(199^{4})^{5}= 1568239201^{5}$
$2003^{15}=2003^{3\times5}=(2003^{3})^5 =8036054027^{5}$
$1568239201<8036054027=>199^{20}<2003^{15}$
d, $3^99 =3^{3\times33}=(3^{3})^{33}=27^{33}>27^{21}$
$11^{21}<27^{21}=>3^{99}>11^{21}$
$3^{2n}=9^n$
$2^{3n}=8^n$
$9>8=>3^{2n}>2^{3n}$
So sánh các số sau
a) 53 và 35
53 = 125
35 = 243
=> 53 < 35
32 và 23
32 = 9
23 = 8
=> 32 > 23
26 và 62
26 = 64
62 = 36
=> 26 > 62
b) 2015 x 2017 và 20162
2015 x 2017
= 2015 x ( 2016 + 1 )
= 2015 x 2016 + 2015
20162
= 2016 x 2016
= 2016 x ( 2015 + 1 )
= 2016 x 2015 + 2016
Vì: 2015 < 2016
=> 2015 x 2017 < 20162
c) 19920 và 200315
19920 < 20020 = ( 23 x 52 )20 = 260 x 540
200315 > 200015 = ( 2 x 103 )15 = ( 24 x 53 )15 = 260 x 545
=> 200315 > 19920
d) 399 và 1121
399 = ( 33 )33 = 2733 > 2721
Vì: 27 > 11
=> 2721 > 1121
=> 399 > 1121
32n và 23n
32n = ( 32 )n = 9n
23n = ( 23 )n = 8n
Vì 9 > 8
=> 9n > 8n
=> 32n > 23n
Vậy 32n > 23n
a: 199^20=1568239201^5
2003^15=8036054027^5
=>199^20<2003^15
b: 3^99=27^33>27^21=11^21
Lời giải:
a.
$199^{20}<200^{20}=(2.100)^{20}=2^{20}.10^{40}=(2^{10})^2.10^{40}< (10^4)^2.10^{40}=10^8.10^{40}=10^{48}$
$2003^{15}> 2000^{15}=(2.10^3)^{15}=2^{15}.10^{45}> 2^{10}.10^{45}> 10^3.10^{45}=10^{48}$
$\Rightarrow 199^{20}< 2003^{15}$
b.
$3^{99}=(3^9)^{11}=19683^{11}$
$11^{21}< 11^{22}=(11^2)^{11}=121^{11}$
Hiển nhiên $19683^{11}> 121^{11}$
$\Rightarrow 3^{99}> 121^{11}> 11^{21}$
sorry nghe h tớ gửi quá 100 tin nhắn nên nó ko cho gửi
Bài 1
a)2711>818
b)6255>1257
c)536<1124
d)32n>23n
Bài 2
a)523<6.522
b)7.213>216
c)2115<275.498
a) Ta có:
\(199^{20}=\left[\left(199\right)^4\right]^5=1568239201^5\)
\(2003^{15}=\left[\left(2003\right)^3\right]^5=8036054027^5\)
Mà: \(8036054027>1568239201\)
\(\Rightarrow1568239201^5< 8036054027^5\)
\(\Rightarrow199^{20}< 2003^{15}\)
b) Xem lại đề
Ta có:
\(5^{75}=\left(5^5\right)^{15}=3125^{15}\)
\(7^{60}=\left(7^4\right)^{15}=2401^{15}\)
Mà: \(3125^{15}>2401^{15}\)
\(\Rightarrow5^{75}>7^{60}\)
_______________
Ta có:
\(3^{39}< 3^{42}\); \(3^{42}=\left(3^6\right)^7=729^7\)
\(11^{21}=\left(11^3\right)^7=1331^7\)
Mà: \(729^7< 1331^7\)
\(\Rightarrow3^{42}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
a) \(5^{75}=\left(5^5\right)^{15}=3125^{15}\)
\(7^{60}=\left(7^4\right)^{15}=2401^{15}\)
mà \(2401^{15}< 3125^{15}\)
\(\Rightarrow5^{75}>7^{60}\)
b) \(3^{39}=\left(3^{13}\right)^3=1594323^3;11^{21}=\left(11^7\right)^3=19487171^3\)
mà \(19487171^3>1594323^3\)
\(\Rightarrow3^{39}< 7^{21}\)
a) 536 và 1124
Ta có: 536= (53)12=12512 (1)
1124=(112)12=12112 (2)
Từ (1) và (2) => 536>1124
tương tự.....
Đáp án là :
câu 20 :625 < 1257
câu 21 :536 > 1124
câu 22 :32n < 23n
câu 23 :523 < 6.522
câu 24 :1124 <19920
câu 25 :399 > 112