Có ai làm được bài này không ????????? giúp mình với :
Bài 1: Tìm n:
- P = 2n-1/ n-1 với n thuộc Z .
- Lưu ý : Dấu " /" là phân số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đặt \(A=\frac{n-8}{n+3}\)
Ta có:\(A=\frac{n-8}{n+3}=\frac{n+3-11}{n+3}=1-\frac{11}{n+3}\)
Để A nguyên thì 11 chia hết cho n+3 hay \(\left(n+3\right)\inƯ\left(11\right)\)
Vậy Ư(11) là:[1,-1,11,-11]
Do đó ta có bảng sau :
n+3 | -11 | -1 | 1 | 11 |
n | -14 | -4 | -2 | 8 |
Vậy phân số là một số nguyên thì n=-14;-4;-2;8
2. a) 3 ( x-5) = 2(x-11)
3x - 15 = 2x - 22
3x - 2x = -22 + 15
x = -7
b) 0.27 + \(\frac{1}{2}\) < x% < 1 -20%
1.25 < x % < 0.8
còn lại mình ko biết
c) \(\frac{x}{2}\)- \(\frac{3}{10}\) = \(\frac{1}{5}\)
\(\frac{x}{2}\) = \(\frac{1}{5}\) + \(\frac{3}{10}\)
\(\frac{x}{2}\) = \(\frac{2}{10}\)+\(\frac{3}{10}\)
\(\frac{x}{2}\) = \(\frac{1}{2}\)
=> x = 1
Bài 16*:
Giải
Gọi ƯCLN(2n+1;3n=2)=d
⇒2n+1 ⋮ d ⇒ 3.(2n+1) ⋮ d ⇒6n+3 ⋮ d
3n+2 ⋮ d 2.(3n+2) ⋮ d 6n+4 ⋮ d
⇒(6n+4)-(6n+3) ⋮ d
⇒ 1 ⋮ d
⇒ d=1
Vậy 2n+1/3n+2 là phân số tối giản.
Chúc bạn học tốt!
\(x\times100567=1467171963\)
\(x=1467171963\div100567\)
\(x=14589\)
Vậy x=14589
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a, \(A=\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=\frac{3}{n+1}\)
=> n + 1 \(\in\)Ư(3) = {1;-1;3;-3}
Lập bảng
n + 1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Vì n \(\in Z\) => tm
b, Gợi ý : A thuộc lớn nhất, tính bth ko sao e nhé !
c, \(A=\frac{n+7}{n-2}=\frac{n-2+9}{n-2}=\frac{9}{n-2}\)
Để A nguyên .... làm tiếp e nhé !
2n+33n−1∈Z2n+33n−1∈Z
<=> 2n + 3 chia hết cho 3n - 1
<=> 6n + 9 chia hết cho 3n - 1
<=> (6n - 2) + 11 chia hết cho 3n - 1
<=> 2(3n - 1) + 11 chia hết cho 3n - 1
<=> 11 chia hết cho 3n - 1
<=> 3n - 1 thuộc Ư(11) = {±1;±11±1;±11}
Thay từng giá trị vào 3n - 1 để tìm n
Rồi xét giá trị của n có nguyên hay không
Nếu không thì vứt
Nếu là số nguyên thì nhận
\(\dfrac{6n+9}{3n-1}=\dfrac{2\left(3n-1\right)+11}{3n-1}=2+\dfrac{11}{3n-1}\)
\(\Rightarrow3n-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
3n-1 | 1 | -1 | 11 | -11 |
n | loại | 0 | 4 | loại |
Giải
Ta có:n+111..1-7(gồm 2n chữ số) vì thế
111..1(gồm 2n chữ số 1) nên có tổng bằng các chữ số là 2n.Vi thế 2n chia 3 có dư bằng số 1111...1111
tức là ta thay A=n + 2n - 7 chia 3 vẫn dư như biểu thức A đầu tiên suy ra biểu thức dư 2 khi chia cho 3
Mình làm hơi tắt bạn thông cam