\(\left[\dfrac{-2}{3}\right]^3x9^2+\left[\dfrac{-3}{4}\right]^2x32\)
giúp mình vs mình hông bt làm ai làm đúng mình tick Cho nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\dfrac{98:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right)\cdot\dfrac{7}{4}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}\\ E=\dfrac{98}{\dfrac{3}{5}}+\dfrac{\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\\ E=\dfrac{490}{3}+\dfrac{\dfrac{7}{4}}{7}=\dfrac{490}{3}+\dfrac{1}{4}=\dfrac{1963}{12}\)
bạn ơi chỗ kia mik nhìn hơi loạn tí bạn giải thích giúp mik với
A = (\(\dfrac{1}{2}\) + 1).(\(\dfrac{1}{3}\) + 1).(\(\dfrac{1}{4}\) + 1)...(\(\dfrac{1}{99}\) + 1)
A = \(\dfrac{1+2}{2}\).\(\dfrac{1+3}{3}\).\(\dfrac{1+4}{4}\)...\(\dfrac{1+99}{99}\)
A = \(\dfrac{3}{2}\).\(\dfrac{4}{3}\).\(\dfrac{5}{4}\)....\(\dfrac{100}{99}\)
A = \(\dfrac{100}{2}\) \(\times\) \(\dfrac{3.4.5...99}{3.4.5...99}\)
A = 50
\(=\) 4x-2-3x+3=2x+1
\(=\)4x-3x-2x=1+2-3
\(=\)-1x = 0
\(=\)x=0
\(u_1=\dfrac{1}{\sqrt{2}};q=\dfrac{1}{\sqrt{2}}\)
\(S_{99}=\dfrac{\dfrac{1}{\sqrt{2}}\cdot\left(\dfrac{1}{\sqrt{2}}^{99}-1\right)}{\dfrac{1}{\sqrt{2}}-1}=\dfrac{1}{\sqrt{2}}\cdot\left(\dfrac{1-2^{49}\cdot\sqrt{2}}{2^{49}\cdot\sqrt{2}}\right):\dfrac{1-\sqrt{2}}{\sqrt{2}}\)
\(=\dfrac{1}{1-\sqrt{2}}\cdot\dfrac{1-2^{49}\cdot\sqrt{2}}{2^{49}\cdot\sqrt{2}}\)
Phần nào không hiểu bạn có thể nhắn hỏi mình nhe
Ta có : mẫu số 1 : 4 . 1
mẫu số hai : 4.7
... mẫu số thứ 96 = 100.103 = 10300
=> Số số hạng y là 100
Ta có :
\((y+..+y) + (\frac{3}{1.4} + \frac{3}{4.7} + ...+ \frac{3}{100.103})\)
\(= ( y+...+y) + [1. (\frac{1}{1.4} + \frac{1}{4.7} + ..+ \frac{1}{100.103})]\)
\(= (y+...y) + [1.(\frac{1}{1} - \frac{1}{4} + \frac{1}{4} - \frac{1}{7} + ...+ \frac{1}{100} - \frac{1}{103}) ]\)
\(= (y+...+y) + (1 - \frac{1}{103})\)
\(= (y+...+y) + \frac{102}{103}\)
\(=> (y+...+y) = \frac{308}{103} - \frac{102}{103} = \frac{206}{103}\)
\(=> y = \frac{206}{103} : 100 = \frac{206}{10300} = \frac{103}{5150}\) ( Chia 100 vì có 100 số hạng y)
Vậy \(y = \frac{103}{5150}\)
cho mình nghi lại nha mn \(\dfrac{-3}{5}+\dfrac{28}{5}\cdot\left(\dfrac{43}{56}+\dfrac{5}{24}-\dfrac{21}{63}\right)\)
\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)
\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)
\(\left(\dfrac{1}{2^2}-1\right)\times\left(\dfrac{1}{3^2-1}\right)\times\left(\dfrac{1}{4^2}-1\right)\times...\times\left(\dfrac{1}{100^2}-1\right)\)
\(=\dfrac{3}{2^2}\times\dfrac{8}{3^2}\times\dfrac{15}{4^2}\times...\times\dfrac{100^2-1}{100^2}\)
\(=\dfrac{1\times3}{2\times2}\times\dfrac{2\times4}{3\times3}\times\dfrac{3\times5}{4\times4}\times...\times\dfrac{99\times101}{100\times100}\)
\(=\dfrac{1\times2\times3\times...\times99}{2\times3\times4\times...\times100}\times\dfrac{3\times4\times5\times...\times101}{2\times3\times4\times...\times100}\)
\(=\dfrac{1}{100}\times\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
\(\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\dfrac{-3}{4}\cdot\dfrac{-8}{3}\cdot...\cdot\dfrac{-9999}{10000}\)
\(=\dfrac{1\cdot\left(-3\right)}{2\cdot2}\cdot\dfrac{2\cdot\left(-4\right)}{3\cdot3}\cdot...\cdot\dfrac{99\cdot\left(-101\right)}{100\cdot100}\)
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{\left(-3\right)\cdot\left(-4\right)\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)
Ở tử số phân số bên phải có số thừa số là: \(101-3+1=99\)
99 là số lẻ nên tử số vế phải sẽ cho ra số âm.
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)
\(=\dfrac{1\cdot\left(-101\right)}{100\cdot2}\)
\(=\dfrac{-101}{200}\)
\(=\dfrac{-8}{27}\cdot81+\dfrac{9}{16}\cdot32\)
=-24+18
=-6