Cho a, b, c > 0 thỏa mãn (a + b)(a + c) = 8. Tìm GTLN của C = abc(a + b + c). giúp mình phần dấu = xảy ra khi nào nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a, b, c > 0 nên áp dụng bất đẳng thức Cô-si ta có:
\(\frac{a}{c}+\frac{a}{c}+\frac{c}{b}\ge3\sqrt[3]{\frac{a^2}{bc}}=3a\) (vì \(abc\le1\Rightarrow\frac{1}{bc}\ge a\))
tương tự: \(\frac{b}{a}+\frac{b}{a}+\frac{a}{c}\ge3b\); \(\frac{c}{b}+\frac{c}{b}+\frac{b}{a}\ge3c\)
\(\Rightarrow3\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\ge3\left(a+b+c\right)\Leftrightarrowđpcm\)
Ta có \(\left(a+b\right)\left(a+c\right)=8\)\(\Leftrightarrow a^2+ab+bc+ca=8\Leftrightarrow a\left(a+b+c\right)+bc=8\)
Mặt khác vì \(a,b,c>0\) nên ta có thể lấy căn bậc hai của C: \(C=abc\left(a+b+c\right)\Leftrightarrow\sqrt{C}=\sqrt{abc\left(a+b+c\right)}\)
\(=\sqrt{a\left(a+b+c\right).bc}\)
Áp dụng BĐT Cô-si cho hai số dương \(a\left(a+b+c\right)\)và \(bc\), ta có:
\(\sqrt{C}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=\frac{8}{2}=4\)(vì \(a\left(a+b+c\right)+bc=8\left(cmt\right)\))
\(\Leftrightarrow\sqrt{C}\le4\)\(\Leftrightarrow C\le16\)
Dấu "=" xảy ra khi \(a\left(a+b+c\right)=bc\)\(\Leftrightarrow a\left(a+b+c\right)-bc=0\)\(\Leftrightarrow a\left(a+b+c\right)+bc-2bc=0\)
\(\Leftrightarrow8-2bc=0\)\(\Leftrightarrow2bc=8\)\(\Leftrightarrow bc=4\)
Như vậy với \(a,b,c>0\) và \(\left(a+b\right)\left(a+c\right)=8\)thì GTLN của C là 16 khi \(bc=4\)
Em lớp 9, nếu bài làm có gì sai thì mong chị thông cảm ạ.
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8
\(\Rightarrow\)a ( a + b + c ) + bc = 8
\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)
\(\Rightarrow abc\left(a+b+c\right)\le16\)
Vậy GTLN của A là 16
\(\dfrac{1}{1+a}=1-\dfrac{1}{1+b}+1-\dfrac{1}{1+c}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\)
Tương tự:
\(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ac}{\left(1+a\right)\left(1+c\right)}}\) ; \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+c\right)}}\)
Nhân vế với vế:
\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
\(N_{max}=\dfrac{1}{8}\) khi \(a=b=c=\dfrac{1}{2}\)