cho tam giác ABC, bt 12A = 10B =15C
a) So sánh các cạnh của tam giác ABC
b) tia phân giác góc B cắt cạnh AB ở C. So sánh AD và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=15cm
Xét ΔABC có AC<AB<BC
nên \(\widehat{B}< \widehat{C}< \widehat{A}\)
b: Xét ΔEAD có
EC là đường cao
EC là đường trung tuyến
DO đó: ΔEAD cân tại E
c: Xét ΔDAB có
C là trung điểm của AD
CE//AB
Do đó: E là trung điểm của BD
a: BC=căn 4^2+3^2=5cm
AC<AB<BC
=>góc B<góc C<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
góc EBF chung
=>ΔBEF đồng dạng với ΔBAC
=>BF=BC
a: góc C=180-60-80=40 độ
góc BAD=góc CAD=60/2=30 độ
góc ADB=180-80-30=70 độ
b: vì góc BAD<góc ADB<góc ABD
nên BD<AB<AD
c: góc ADC=180-70=110 độ
Vì góc ADC>góc C>góc DAC
nên AC>AD>CD
a) Ta có:góc EDB= góc FBD(ED//BF)
góc FDB= góc EBD(DF//BE)
Mà góc FBD = góc EBD (BD là tia phân giác góc EBF)
=>góc EDB= góc FDB
=>DB là tia phân giác góc EDF
b)Vì ED//BC
=>góc AED=góc ABC(2 góc đồng vị)
Vì DF//AB
=>góc ADE= góc ACB(2 góc đồng vị)
Vậy góc AED=góc ABC; góc ADE =góc ACB
c)Xét tam giác EBD và tam giác FDB có:
góc BDE= góc DBF
BD chung
góc EDB= góc FBD
=>tam giác EBD=tam giác FDB(g-c-g)
=>góc BED = góc BFD