K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

x^2 + 2y^2 - 2xy + 2x + 2 - 4y =0 
<=>x^2 + y^2 - 2xy+2x-2y+y^2-2y+1+1=0 
<=>(x-y)^2+2(x-y)+1+(y-1)^2=0 
<=>(x-y+1)^2+(y-1)^2=0 
<=>y=1;x=0

13 tháng 7 2017

\(x^2+2y^2-2xy+4y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2=0\end{cases}}\Leftrightarrow x=y=-2\)

Vậy \(x+y=-2-2=-4\)

8 tháng 8 2018

\(A=2x^2+y^2-2xy+x+2\)

\(A=\left(x^2-2xy+y^2\right)+\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{7}{4}\)

\(A=\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x+\frac{1}{2}\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}=A\ge\frac{7}{4}>0\forall x;y\)

Vậy không có các số tự nhiên thỏa mã đẳng thức \(A=2x^2+y^2-2xy+x+2=0\)

18 tháng 8 2017

\(x^2+y^2+26+10x+2y=0\)

\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)( do \(\left(x+5\right)^2\ge0;\left(y+1\right)^2\ge0\))

\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

15 tháng 12 2017

2x2+y2+9=6x+2xy

=>2x2+y2+9-6x-2xy=0

=>(x2-2xy+y2)+(x2-6x+9)=0

=>(x-y)2+(x-3)2=0

do (x-y)2 ≥ 0 ∀ x,y

(x-3)2 ≥ 0 ∀x

=>(x-y)2+(x-3)2 =0 khi

=>\(\left[{}\begin{matrix}x-y=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=x=3\\x=3\end{matrix}\right.\)

thay x=3 và y=3

Q=32017.32018-32018. 32017+\(\dfrac{1}{9}.3.3\)

Q=1

15 tháng 12 2017

bạn giỏi quá!

yeu

\(2x^2+y^2-2y=2\left(xy-1\right)\)

\(2x^2+y^2-2y=2xy-2\)

\(2x^2+y^2-2y-2xy+2=0\)

đc đến đây :v