K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Lời giải:
a.

$AC, BD$ cùng vuông góc với $AB$ (do là tiếp tuyến)

$MH\perp AB$ (gt)

$\Rightarrow AC\parallel MH\parallel BD$. Áp dụng định lý Talet:

$\frac{MK}{BD}=\frac{MC}{CD}$

$\Rightarrow MK=\frac{MC.BD}{CD}(1)$

$\frac{HK}{AC}=\frac{BK}{BC}=\frac{MD}{DC}$

$\Rightarrow HK=\frac{AC.MD}{DC}(2)$

Theo tính chất 2 tiếp tuyến cắt nhau thì $AC=MC; BD=MD(3)$

Từ $(1); (2); (3)\Rightarrow HK=MK$ nên $K$ là trung điểm $MH$

b. Gọi $K'$ là giao của $AD$ với $MH$

Tương tự như câu a, áp dụng định lý Ta let:

$\frac{MK'}{CA}=\frac{DM}{DC}$

$\Rightarrow MK'=\frac{AC.DM}{DC}$
$\frac{HK'}{DB}=\frac{AK'}{AD}=\frac{CM}{CD}$

$\Rightarrow HK'=\frac{BD.CM}{CD}$

$\Rightarrow HK'=MK'$ nên $K'$ là trung điểm $MH$

$\Rightarrow K\equiv K'$ nên $BC, AD, MH$ đồng quy.

c. Không có dữ liệu điểm $E$. 

 

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Hình vẽ:

1: Xét (O) có

CA là tiếp tuyến có A là tiếp điểm

CM là tiếp tuyến có M là tiếp điểm

Do đó: OC là tia phân giác của \(\widehat{MOA}\)

Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm

DM là tiếp tuyến có M là tiếp điểm

Do đó: OD là tia phân giác của \(\widehat{MOB}\)

Ta có: \(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\left(\widehat{MOA}+\widehat{MOB}\right)\cdot\dfrac{1}{2}\)

\(=180^0\cdot\dfrac{1}{2}=90^0\)

hay ΔCOD vuông tại O 

Xét (O) có

CA là tiếp tuyến có A là tiếp điểm

CM là tiếp tuyến có M là tiếp điểm

Do đó: CM=CA

Xét (O) có

DB là tiếp tuyến có B là tiếp điểm

DM là tiếp tuyến có M là tiếp điểm

Do đó: DB=DM

\(AC\cdot BD=CM\cdot MD=OM^2\) không phụ thuộc vào vị trí của M

21 tháng 11 2022

a: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là đường trung trực của MA

=>OC vuông góc với MA tại I

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

=>OD vuông góc với BM

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

=>O nằm trên đường tròn đường kính CD

b: Xét tứ giác MIOK có

góc MIO=góc IOK=góc MKO=90 độ

nên MIOK là hình chữ nhật

=>MO=IK

c: Xét hình thang ABDC có

O,O' lần lượt là trung điểm của AB,CD

nên OO' là đường trung bình

=>OO''//AC

=>OO' vuông góc với AB

=>AB là tiếp tuyến của (O')

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có

DB là tiếp tuyến

DM là tiếp tuyến

Do đó: DB=DM

Ta có: MC+MD=DC

nên DC=CA+DB

26 tháng 12 2021

thx bạn

 

21 tháng 11 2022

Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là đường trung trực của MA

=>OC vuông góc với MA tại I

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

=>OD vuông góc với BM

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

 

11 tháng 12 2021

a: Xét (O) có

DM là tiếp tuyến

DA là tiếp tuyến

Do đó: OD là tia phân giác của góc MOA(1)

Xét (O) có 

EM là tiếp tuyến

EB là tiếp tuyến

Do đó: OE là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra ΔDOE vuông tại O

27 tháng 10 2021

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=CA+DB

27 tháng 10 2021

mình cần phần d, f