Cho nửa đường tròn (O), đường kính AB = 2R. Trên cùng một nửa mặt phẳng bờ AB kẻ 2 tiếp tuyến Ax, By với nửa (O). Lấy M bất kì trên nửa (O). Kẻ tiếp tuyến thứ ba với nửa đường tròn tại M cắt Ax, By thứ tự ở C, D. Gọi giao điểm của BM và Ax là E. Gọi H là hình chiếu của M trên AB, K là giao điểm của BC và MH.
a) Tìm vị trí điểm M để \(S_{ACDB}\) nhỏ nhất
b) Chứng minh: 3 đường thẳng BC, AD, MH đồng quy.
c) Chứng minh: OE vuông góc AD.