Viết phương trình y = ax + b của các đường thẳng:
a) Đi qua hai điểm A(4;3), B(2 ; -1);
b) Đi qua điểm A(1 ; -1) và song song với Ox.
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta:\dfrac{x-2}{1}=\dfrac{y+3}{-2}\)
\(\Rightarrow\) VTCP của \(\Delta\) là \(\overrightarrow{u}=\left(1;-2\right)\) \(\Rightarrow\) VTPT của \(\Delta\) là \(\overrightarrow{n}=\left(2;1\right)\).
a) Đường thẳng song song \(\Delta\Rightarrow\) nó nhận \(\overrightarrow{u}\) làm VTCP
\(\Rightarrow\) PT đường thẳng đi qua \(A\left(-5;2\right)\) và song song \(\Delta\) là: \(\dfrac{x+5}{1}=\dfrac{y-2}{-2}\).
b) Đường thẳng vuông góc \(\Delta\Rightarrow\) nó nhận \(\overrightarrow{n}\) làm VTCP
\(\Rightarrow\) PT đường thẳng đi qua \(A\left(-5;2\right)\) và vuông góc \(\Delta\) là: \(\dfrac{x+5}{2}=\dfrac{y-2}{1}\).
+ A (4; 3) thuộc đường thẳng y = ax + b ⇒ 3 = 4.a + b (1)
+ B (2; –1) thuộc đường thẳng y = ax + b ⇒ –1 = 2.a + b (2)
Lấy (1) trừ (2) ta được: 3 – (–1) = (4a + b) – (2a + b)
⇒ 4 = 2a ⇒ a = 2 ⇒ b = –5.
Vậy đường thẳng đi qua hai điểm A(4;3), B(2 ; –1) là y = 2x – 5.
Theo đề, ta có:
\(\left\{{}\begin{matrix}-3a+b=2\\5a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-8a=6\\5a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{4}\\b=-4-5a=-4-5\cdot\dfrac{-3}{4}=-4+\dfrac{15}{4}=-\dfrac{1}{4}\end{matrix}\right.\)
+ Đường thẳng song song với Ox có dạng y = b.
+ Đường thẳng đi qua điểm A(1 ; –1) nên b = – 1.
Vậy đường thẳng cần tìm là y = –1.
Vì hệ số góc bằng -2 nên a=-2
hay y=-2x+b
Thay x=-1 và y=2 vào y=-2x+b, ta được:
\(-2\cdot\left(-1\right)+b=2\)
hay b=0
Vậy: y=-2x
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}4a+b=3\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3-4a=-5\end{matrix}\right.\)
thank chị