Cho a , b , c , d thuộc Z CMR ;
( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Ha Le - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 ⇔ trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.
Hiệu của 2 số chẵn và 2 số lẽ trong 4 số đó chia hết cho 2
⇒ Tích trên chia hết cho 3 và 4.
Mà ƯCLN(3; 4) = 1 nên (a-b).(a-c).(b-c).(b-d).(c-d) chia hết cho (3 . 4) = 12.
\(-\) Chia 4 số a , b , c , d cho 3 có thể xảy ra 3 trường hợp về số dư là dư 0 , dư 1 , dư 2 .Do đó có ít nhất có 2 số có cùng số dư khi chia cho 3 .Do đó 1 hiệu trong tích trên chia hết cho 3 .Suy ra tích đó chia hết cho 3
\(-\)Chia 4 số a , b , c , d cho 4 , ta xét 4 số a , b , c , d chia hết cho 2 .Có thể xảy ra 2 trường hợp về số dư là dư 0 , dư 1 .Do đó tồn tại ít nhất 2 cặp số có cùng số dư khi chia cho 2 .Nên các hiệu trên ít nhất có 2 hiệu chia hết cho 2 .Do đó tích trên chia hết cho 4
Mà ƯCLN ( 3 , 4 ) = 1
Suy ra tích trên chia hết cho 12
Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 ⇔ trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.
Hiệu của 2 số chẵn và 2 số lẽ trong 4 số đó chia hết cho 2
\(\Rightarrow\) Tích trên chia hết cho 3 và 4.
Mà ƯCLN(3; 4) = 1 nên (a-b).(a-c).(b-c).(b-d).(c-d) chia hết cho (3 . 4) = 12.
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad>bc\Leftrightarrow ad+dc>bc+dc\Leftrightarrow d\left(a+c\right)>c\left(b+d\right)\)
<=>\(\frac{d\left(a+c\right)}{d\left(b+d\right)}>\frac{c\left(b+d\right)}{d\left(b+d\right)}\)(do b,d>0)<=>\(\frac{a+c}{b+d}>\frac{c}{d}>\frac{a}{b}\)
ta có đpcm.