K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

b: Ta có: ΔACB cân tại A

mà AD là tia phân giác

nên AD là đường cao

14 tháng 3 2022

có ai giúp mình với 

 

14 tháng 3 2022

\(BC>B'C'\)

a: Sửa đề: Tính BC

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔABD vuông tại A có

AB chung

AC=AD

Do đó: ΔABC=ΔABD

c: Ta có: ΔABC=ΔABD

=>\(\widehat{ABC}=\widehat{ABD}\)

Xét ΔBEA vuông tại E và ΔBFA vuông tại F có

BA chung

\(\widehat{EBA}=\widehat{FBA}\)

Do đó: ΔBEA=ΔBFA

=>AE=AF

=>ΔAEF cân tại A

Sửa đề: M là trung điểm của BC

a) Sửa đề: ΔHBM=ΔKCM

Xét ΔHBM vuông tại H và ΔKCM vuông tại K có 

MB=MC(M là trung điểm của BC)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔHBM=ΔKCM(cạnh huyền-góc nhọn)

4 tháng 12 2015

vào câu hỏi tương tự nhé bạn

3:

Đặt HB=x; HC=y

Theo đề, ta có: x+y=289 và xy=120^2=14400

=>x,y là các nghiệm của phương trình:

a^2-289a+14400=0

=>a=225 hoặc a=64

=>(x,y)=(225;64) và (x,y)=(64;225)

TH1: BH=225cm; CH=64cm

=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)

TH2: BH=64cm; CH=225cm

=>AB=119m; AC=255cm

a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1}{4}\)

\(\dfrac{AN}{AC}=\dfrac{1.5}{6}=\dfrac{1}{4}\)

Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)\(\left(=\dfrac{1}{4}\right)\)

Xét ΔABC có 

M\(\in\)AB(gt)

N\(\in\)AC(gt)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)

Do đó: MN//BC(Định lí Ta lét đảo)

18 tháng 2 2020

P/S 3 chữ hoa liên tiếp là góc :D

a,Ta có :\(AD//BC=>DAC=BCA\)

Xét Tam giác ABC và tam giác CDA

\(BC=DA\)(gt)

\(BCA=DAC\)(cmt)

\(CA\)cạnh chung

\(=>\Delta ABC=\Delta CDA\left(c-g-c\right)\)

b,Ta có : \(AD//BC=>ADB=CBD\)

Xét tam giác ABD và tam giác CDB

\(BC=AD\)(gt)

\(ADB=CBD\)(cmt)

\(BD\)cạnh chung

\(=>\Delta ABD=\Delta CDB\left(c-g-c\right)\)

c,Xét tam giác ODA và tam giác OBC

\(DBC=BDA\)(cm câu b)

\(AD=BC\)(gt)

\(DAC=ACB\)(cm câu a)

\(=>\Delta ODA=\Delta OBC\left(g-c-g\right)\)