K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

a: BC=BH+CH

=3,6+6,4=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=3,6\cdot6,4=23,04\)

=>\(AH=\sqrt{23,04}=4,8\left(cm\right)\)

ΔAHC vuông tại H

=>\(AC^2=AH^2+HC^2\)

=>\(AC^2=4,8^2+6,4^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}\simeq90^0-53^0=37^0\)

b: Sửa đề; \(AM\cdot MB+AN\cdot NC=MN^2\)

Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

Xét ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot MB=HM^2\)

Xét ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot NC=HN^2\)

\(AM\cdot MB+AN\cdot NC=HM^2+HN^2=MN^2\)

c: AK\(\perp\)MN

=>\(\widehat{ANM}+\widehat{KAC}=90^0\)

mà \(\widehat{ANM}=\widehat{AHM}\)(AMHN là hình chữ nhật)

nên \(\widehat{AHM}+\widehat{KAC}=90^0\)

mà \(\widehat{AHM}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{B}+\widehat{KAC}=90^0\)

mà \(\widehat{B}+\widehat{KCA}=90^0\)

nên \(\widehat{KAC}=\widehat{KCA}\)

=>KA=KC

\(\widehat{KAC}+\widehat{KAB}=90^0\)

\(\widehat{KCA}+\widehat{KBA}=90^0\)

mà \(\widehat{KAC}=\widehat{KCA}\)

nên \(\widehat{KAB}=\widehat{KBA}\)

=>KA=KB

mà KA=KC

nên KB=KC

=>K là trung điểm của BC

23 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

23 tháng 7 2023

a) \(AH^2=BH.CH=3,6.6,4=23,04\)

\(\Rightarrow AH=4,8\left(cm\right)\)

\(AC^2=AH^2+HC^2=23,04+40,96=64\)

\(\Rightarrow AC=8\left(cm\right)\)

\(AB^2=AH^2+BH^2=23,04+12,96=36\)

\(\Rightarrow AB=6\left(cm\right)\)

\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)

\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)

\(\Rightarrow C=90^o-53^o=37^o\)

b) Xét Δ vuông ABH, có đường cao DH ta có :

\(AH^2=AD.AB\left(1\right)\)

Tương tự  Δ vuông ACH :

\(AH^2=AE.AC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)