CTR A = 1/4 + 1/9 + 1/16 + 1/25 + ....+ 1/2500 < 1
giải nhanh giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(1-1/3)(1-1/4)(1-1/5)*...*(1-1/50)(1+1/3)(1+1/4)*...*(1+1/50)
=2/3*3/4*...*49/50*4/3*5/4*...*51/50
=2/50*51/3=17*1/25=17/25
\(\left(1-\dfrac{1}{9}\right)\cdot\left(1-\dfrac{1}{16}\right)\cdot\left(1-\dfrac{1}{25}\right)\cdot...\cdot\left(1-\dfrac{1}{2500}\right)\)
\(=\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\cdot\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\cdot...\cdot\left(\dfrac{2500}{2500}-\dfrac{1}{2500}\right)\)
\(=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
\(=\dfrac{8\cdot15\cdot24\cdot...\cdot2499}{9\cdot16\cdot25\cdot...\cdot2500}\)
\(=\dfrac{\left(2\cdot4\right)\cdot\left(3\cdot5\right)\cdot\left(4\cdot6\right)\cdot....\cdot\left(49\cdot51\right)}{\left(3\cdot3\right)\cdot\left(4\cdot4\right)\cdot\left(5\cdot5\right)\cdot...\cdot\left(50\cdot50\right)}\)
\(=\dfrac{\left(2\cdot3\cdot4\cdot5\cdot...\cdot49\right)\left(4\cdot5\cdot6\cdot...\cdot51\right)}{\left(2\cdot3\cdot4\cdot...\cdot50\right)\left(2\cdot3\cdot4\cdot...\cdot50\right)}\)
\(=\dfrac{1\cdot51}{50\cdot2}\)
\(=\dfrac{51}{100}\)
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940
\(\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{9}\right)\times\left(1-\frac{1}{16}\right)\times\left(1-\frac{1}{25}\right)\times\left(1-\frac{1}{36}\right)\)
\(=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times\frac{36}{36}\)
\(=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times\frac{4.6}{5.5}\times\frac{5.7}{6.6}\)
\(=\frac{1.2.3.4.5}{2.3.4.5.6}\times\frac{3.4.5.6.7}{2.3.4.5.6}\)
\(=\frac{1}{6}\times\frac{7}{2}\)
\(=\frac{7}{12}\)
(1-1/4)×(1-1/9)×(1-1/16)×(1-1/25)×(1-1/36)
=(4/4-1/4)×(9/9-1/9)×(16/16-1/16)×(25/25-1/25)×(36/36-1/36)
=3/4×8/9×15/16×24/25×35/36
=1×3×2×4×3×5×4×6×5×7/2×2×3×3×4×4×5×5×6×6
=(1×2×3×4×5)×(3×4×5×6×7)/(2×3×4×5×6)×(2×3×4×5×6)
=1/6×7/2
=7/12
\(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(N>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(N>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{10}{22}>\frac{9}{22}\)
Vậy N > 9/22
Lời giải:
$\frac{1}{4}< \frac{1}{1.2}$
$\frac{1}{9}< \frac{1}{2.3}$
$\frac{1}{16}< \frac{1}{3.4}$
....
$\frac{1}{2500}< \frac{1}{49.50}$
Cộng theo vế:
$A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1$
Ta có đpcm.
Em cần làm gì để bảo tồn nề văn hóa Sa Huỳnh
Giải câu này giùm em với ạ