a, Với \(k\inℕ^∗\), giải thích tại sao \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
b, Áp dụng để tính tổng sau: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{99.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
a) Ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
\(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)
\(A=\frac{n}{n+1}\)
Học tốt nha^^
A = \(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+... + \(\frac{1}{99}\)-\(\frac{1}{100}\)
A = \(\frac{1}{1}\)-\(\frac{1}{100}\)
ai tốt bụng thì tk cho mk nha, mk đg âm điểm đây
A = \(\frac{99}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{79.80}=\frac{79}{80}\)
#)Giải :
b, Ta xét \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{79.80}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{79}-\frac{1}{80}\)
\(=1-\frac{1}{80}\)
\(=\frac{79}{80}=\frac{ }{80}\)
Vậy ........................................
Ta có :\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+....+\frac{1}{2020}\right)\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{2019}-\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1010}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
\(\Rightarrow\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
=> k = 1
=> k là số tự nhiên (đpcm)
a, Ta có \(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
b, Ta có: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Do đó \(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100}\)