K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\left(d\in N\right)\)

\(\Leftrightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Leftrightarrow1⋮d\)

\(\LeftrightarrowƯCLN\left(3n+2;2n+1\right)=1\)

\(\Leftrightarrow2n+1;3n+2\) nguyên tố cùng nhau với mọi n

7 tháng 7 2017

Để chứng minh hai số nguyên tố cùng nhau ta chứng minh UCLN của hai số là 1

Giải:Gọi UCLN(2n+1,3n+2)=d.Ta chứng minh d=1

Ta có:2n+1 chia hết cho d                    \(\Rightarrow\)3.(2n+1) chia hết cho d                   \(\Rightarrow\)6n+3 chia hết cho d

         3n+2 chia hết cho d                     \(\Rightarrow\)2.(3n+2) chia hết cho d                   \(\Rightarrow\)6n+4 chia hết cho d

\(\Rightarrow\)(6n+4)-(6n+3) chia hết cho d

\(\Rightarrow\)1 chia hết cho d

\(\Rightarrow\)d=1

Vậy 2n+1 và 3n+2 nguyên tố cùng nhau

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

24 tháng 4 2022

Ta có: 202220212+k≤202220212 (với klà số tự nhiên bất kì) 

Ta có: 

A=202220212+1+202220212+2+...+202220212+2021

≤202220212+202220212+...+202220212=202220212.2021=20222021

Ta có: 202220212+k>202220212+2021=20222021.2022=12021với ktự nhiên, k<2021

Suy ra A=202220212+1+202220212+2+...+202220212+2021

>12021+12021+...+12021=20212021=1

Suy ra 1<A≤20222021do đó Akhông phải là số tự nhiên. 

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

16 tháng 12 2016

Gọi d là ƯCLN(7n+3;2n+1)    (d thuộc N*)

Ta có: 7n+3 chia hết cho d => 14n+6 chia hết cho d (1)

           2n+1 chia hết cho d => 14n+7 chia hết cho d    (2)

TỪ (1) và (2) => 14n+7-14n-6 chia hết cho d

                     => 1 chia hết cho d

                     => d thuộc Ư(1)={1}

                     => d=1

Vì d=1 => ƯCLN(7n+3;2n+1)=1

Vậy 7n+3 và 2n+1 là 2 số nguyên tố cùng nhau              ĐPCM

31 tháng 12 2021

ko biêtsssssss