Bài 4: Cho tam giác MNP vuông tại M. Gọi A là trung điểm của MP. Gọi Q là điểm đối xứng với N qua A.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Gọi I là điểm đối xứng với N qua M. Chứng minh tứ giác MPQI là hình chữ nhật c) Kéo dài IA cắt NP tại B. Vẽ đường thẳng qua M song song với IA cắt NP tại K. Chứng minh: KP = 2KN
d) Qua N kẻ đường thẳng song song với IA cắt MP kéo dài tại E. Tam giác MNP cần có thêm điều kiện gì để tứ giác AIEN là hình vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tự vẽ hình nha
a, Xét tứ giác ABCD có
MA=MC=1/2AC( m là trung điểm AC-gt)
MB=MD=1/2BD(B đối D qua M-gt)
Mà BD cắt AC tại M
-> ABCD là hình bình hành
a) Do B và D đối xứng qua M
\(\Rightarrow\) M là trung điểm BD
Tứ giác ABCD có:
M là trung điểm AC (gt)
M là trung điểm BD (cmt)
\(\Rightarrow\) ABCD là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
b) Do ABCD là hình bình hành
\(\Rightarrow\) AB // CD và AB = CD
\(\Rightarrow\) AN // CD
Do B và N đối xứng nhau qua A
\(\Rightarrow AN=AB\)
Mà AB = CD (cmt)
\(\Rightarrow\) AN = CD
Do AB \(\perp\) AC (\(\Delta ABC\) vuông tại A)
\(\Rightarrow AN\perp AC\)
\(\Rightarrow\widehat{CAN}=90^0\)
Tứ giác ACDN có:
AN // CD (cmt)
AN = CD (cmt)
\(\Rightarrow ACDN\) là hình bình hành
Mà \(\widehat{CAN}=90^0\)
\(\Rightarrow ACDN\) là hình chữ nhật (hình bình hành có một góc vuông)
c) Gọi E là giao điểm của MN và BC
Do AK // MN (gt)
\(\Rightarrow AK\) // ME và AK // NE
\(\Delta BNE\) có
AK // NE
A là trung điểm BN
\(\Rightarrow\) K là trung điểm BE
\(\Rightarrow KB=KE\)
\(\Delta AKC\) có:
AK // ME (cmt)
M là trung điểm AC
\(\Rightarrow\) E là trung điểm CK
\(\Rightarrow\) KC = 2 KE
Mà KB = KE (cmt)
\(\Rightarrow\) KC = 2 KB
a, Vì M là trung điểm AC và BE nên ABCE là hbh
b, Vì ABCE là hbh nên AE//BC;AE=BC(1)
Vì N là trung điểm AB và CF nên ACBF là hbh
Do đó AF//BC;AF=BC(2)
Từ (1)(2) ta được AE trùng AF và AE=AF
Vậy E đx F qua A
a: Xét tứ giác ABCE có
M là trung điểm của AC
M là trung điểm của BE
Do đó: ABCE là hình bình hành
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )
b. D là điểm đối xứng với B qua M =>BM=MD
Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường
=> ABCD là HBH
c. E đối xứng với A qua N => AN=NE
ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )
a: Xét tứ giác MDNE có
I là trung điểm chung của MN và DE
góc MDN=90 độ
Do đó: MDNE là hình chữ nhật
b: Xét tứ giác MNFP có
D là trung điểm chung của MF và NP
MN=MP
Do đó: MNFP là hình thoi
a: Xét tứ giác MNPQ có
A là trung điểm của MP
A là trung điểm của NQ
Do đó: MNPQ là hình bình hành
b: Xét tứ giác MPQI có
MI//QP
MI=QP
Do đó: MPQI là hình bình hành
mà \(\widehat{PMI}=90^0\)
nên MPQI là hình chữ nhật
c: Xét ΔNIB có
M là trung điểm của IN
MK//IB
Do đó: K là trung điểm của NB
=>NK=KB(1)
Xét ΔPMK có
A là trung điểm của MP
AB//MK
Do đó: B là trung điểm của PK
Suy ra: PB=BK(2)
Từ (1) và (2) suy ra KP=2KN