Cho E = $\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}$13 +232 +333 +...+1003100 . Chứng minh rằng : E < $\frac{3}{4}$34
giúp mình với mấy bạn ơi ?.........
giúp đi rồi mình kết bạn nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E= \(\frac{1}{3}+\frac{2}{^{^{^{3^2}}}}+...+\frac{100}{^{3^{100}}}\)
3E=1 + \(\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
3E- E = 1+\(\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+...+\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)-\frac{100}{3^{100}}\)
2E = 1 + \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)- \(\frac{100}{3^{100}}\)
Đặt \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)= C nên 2E < C(1)
Ta có 3C = \(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
3C - C = 2C = 3 - \(\frac{3}{3^{99}}\)nên 2C<3 nên C<\(\frac{3}{2}\)(2)
Từ (1) và (2) suy ra 2E<C<\(\frac{3}{2}\)hay 2E<\(\frac{3}{2}\)suy ra E<\(\frac{3}{2}:2=\frac{3}{4}\)(đpcm)
3E= 1+2/3+3/32+...+100/399
=> 2E=3E-E =(1+1/3+1/32 +...+1/399)-100/3100
CM biểu thức trong ngoặc < 3/2
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)
\(2B=3-\frac{1}{3^{99}}\)
\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)
Thay B vào 4A ta có:
\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)
\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)
\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)
Vì \(\frac{3}{8}>\frac{3}{16}\)
\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)
Vậy \(A< \frac{3}{16}\)
Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\left(đpcm\right)\)
CMR: \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{100}{4^{100}}< \frac{4}{9}\)
Dạng tổng quát: CMR: \(\frac{1}{k}+\frac{2}{k^2}+\frac{3}{k^3}+\frac{4}{k^4}+...+\frac{n}{k^n}< \frac{k}{\left(k-1\right)^2}\)(k;n \(\in\) N*; k > 1)
Bài 1:
Ta có:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
\(A=\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+99+100}\)
\(=3+\frac{3}{\frac{\left(1+2\right).2}{2}}+\frac{3}{\frac{\left(1+3\right).3}{2}}+...+\frac{3}{\frac{\left(1+100\right).100}{2}}\)
\(=3+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}=3+6.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=3+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=3+6.\left(\frac{1}{2}-\frac{1}{101}\right)=3+6.\frac{99}{202}=\frac{600}{101}\)
Tốt nhất bạn nên nói mấy bài đơn giản ik dạng nâng cao ko có cho thi đâu đừng lo
\(\frac{1}{3^2}<\frac{1}{3.4}\)
\(\frac{1}{4^2}<\frac{1}{4.5}\)
\(\frac{1}{5^2}<\frac{1}{5.6}\)
\(...\)
\(\frac{1}{100^2}<\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{3}-\frac{1}{101}\)
Mà \(\frac{1}{3}<\frac{1}{2}\) nên \(\frac{1}{3}-\frac{1}{101}<\frac{1}{2}\)
hay \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2}\)
Đặt A=1/3^2+1/4^2+1/5^2+...+1/100^2
Suy raA<1/2*3+1/3*4+1/4*5+..+1/99*100
A<1/2-1/100<1/2
Ta có điều phải chứng minh.
ta có: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Lại có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=\frac{1}{2}-\frac{1}{101}\)
\(\Rightarrow1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>1-\left(\frac{1}{2}-\frac{1}{101}\right)=1-\frac{1}{2}+\frac{1}{101}\)
\(=\frac{1}{2}+\frac{1}{101}\)
mà \(\frac{1}{2}=\frac{50}{100}>\frac{1}{100}\Rightarrow\frac{1}{2}+\frac{1}{101}>\frac{1}{100}\)
=> đ p c m