K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

2916002

14 tháng 2 2022

bằng 2916002

3.15:
EF vuông góc MH

NP vuông góc MH

Do đó: EF//NP

3.17:

góc yKH+góc H=180 độ

mà hai góc này là hai góc ở vị trí trong cùng phía

nên Ky//Hx

19 tháng 1 2022

- Đây có phải là toán lớp 8 nữa không vậy :)? Mình học toán nâng cao nhưng chưa bao giờ thấy dạng này :).

19 tháng 1 2022

b1:

do x;y thuộc số nguyên N và x,y\(\ge\)2

=>\(-4xy+1< +7x-7y< 4xy+1\)

\(\Rightarrow4x^2y^2-4xy+1< 4x^2y^2+7x-7y< 4x^2y^2+4xy+1\)

\(\Rightarrow\left(2xy-1\right)^2< 4x^2y^2+7x-7y< \left(2xy+1\right)^2\)

mà \(4x^2y^2+7x-7y\) là số chính phương và 1<2xy-1<2xy-1 nên ta có:

\(4x^2y^2+7x-7y-\left(2xy\right)^2\Leftrightarrow x=y\)

 

28 tháng 3 2021

undefinedundefined

28 tháng 3 2021

Chụp rõ đề hơn đi bạn.

30 tháng 12 2022

what is her mother going to prepare for her bỉthdat party

30 tháng 12 2022

there are three sticks of butter in the cupboard

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

3.14:

Ta thấy $\widehat{xNM}=\widehat{xQP}=45^0$. Mà 2 góc này ở vị trí đồng vị nên $MN\parallel PQ$

3.15

$EF\parallel NP$ do cùng vuông góc với $MH$

 

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

3.16: Bạn tự vẽ hình nhé.

3.17:

Ta thấy $\widehat{yKH}+\widehat{KHx}=130^0+50^0=180^0$. Mà 2 góc này ở vị trí trong cùng phía nên $Ky\parallel Hx$

26 tháng 9 2021

a) \(\dfrac{A}{x-2}=\dfrac{x^2+3x+2}{x^2-4}\)

\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{x+1}{x-2}\Leftrightarrow A=x+1\)

b) \(\dfrac{M}{x-1}=\dfrac{x^2+3x+2}{x+1}\)

\(\Leftrightarrow\dfrac{M}{x-1}=\dfrac{\left(x+1\right)\left(x+2\right)}{x+1}\)

\(\Leftrightarrow\dfrac{M}{x-1}=x+2\Leftrightarrow M=\left(x-1\right)\left(x+2\right)=x^2+x-2\)

15 tháng 2 2022

a) \(\left\{{}\begin{matrix}2x-7>0.\\5x+1>0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x>7.\\5x>-1.\end{matrix}\right.\) \(\left\{{}\begin{matrix}x>\dfrac{7}{2}.\\x>\dfrac{-1}{5}.\end{matrix}\right.\)

\(\Rightarrow x>\dfrac{7}{2}.\) \(\Rightarrow x\in\left(\dfrac{7}{2};+\infty\right).\)

Kết luận: Tập nghiệm của hệ bất phương trình trên là \(x\in\left(\dfrac{7}{2};+\infty\right).\)

b) \(\left\{{}\begin{matrix}\left(2x+3\right)\left(x-1\right)>0.\\7x-5< 0.\end{matrix}\right.\) \(\Leftrightarrow\text{​​}\text{​​}\)\(\left\{{}\begin{matrix}\left(2x+3\right)\left(x-1\right)>0.\left(1\right)\\x< \dfrac{5}{7}.\left(2\right)\end{matrix}\right.\)

Xét (1): 

 \(2x+3=0.\Leftrightarrow x=\dfrac{-3}{2}.\\ x-1=0.\Leftrightarrow x=1.\)

Bảng xét dấu:

\(x\)                           \(-\infty\)             \(\dfrac{-3}{2}\)                \(1\)               \(+\infty\)          

\(2x+3\)                             -          \(0\)       +          |       +

\(x-1\)                               -          |         -          \(0\)      +

\(\left(2x+3\right)\left(x-1\right)\)              +         \(0\)         -          \(0\)      +

Vậy \(\left(2x+3\right)\left(x-1\right)>0.\Leftrightarrow\dfrac{-3}{2}< x< 1.\)

Kết hợp với (2).

\(\Rightarrow\) \(\dfrac{-3}{2}< x< \dfrac{5}{7}.\)

\(\Rightarrow x\in\left(\dfrac{-3}{2};\dfrac{5}{7}\right).\)

Kết luận: Tập nghiệm của hệ bất phương trình trên là \(x\in\left(\dfrac{-3}{2};\dfrac{5}{7}\right).\)