Giải pt
\(2x^2-7x+6=0\\\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x^2-7x+6=0$
$\Leftrightarrow (2x^2-4x)-(3x-6)=0$
$\Leftrightarrow 2x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(2x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $2x-3=0$
$\Leftrightarrow x=2$ hoặc $x=\frac{3}{2}$
2x2 - 7x + 6 = 0
\(\Leftrightarrow\) 2x2 - 4x - 3x + 6 = 0
\(\Leftrightarrow\) (2x2 - 4x) - (3x - 6) = 0
\(\Leftrightarrow\) 2x(x - 2) - 3(x - 2) = 0
\(\Leftrightarrow\) (x - 2)(2x - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\)
S = \(\left\{2,\dfrac{3}{2}\right\}\)
<=> (x - 3) (x - 2) (x + 1) (2 x + 1) = 0
\(x=3;x=2;x=-1;x=-\frac{1}{2}\)
a)
`x^2 +5x+6=0`
`<=> x^2 + 3x +2x+6=0`
`<=> x(x+3)+2(x+3)=0`
`<=> (x+3)(x+2)=0`
`<=> x+3=0 hoặcx+2=0`
`<=> x=-3 hoặc x=-2`
b)
`x^2 -7x+6=0`
`<=> x^2 -6x-x+6=0`
`<=> x(x-6)-(x-6)=0`
`<=> (x-6)(x-1)=0`
`<=> x-6=0 hoặc x-1=0 `
`<=> x=6 hoặc x=1`
c)
`x^2 +x -12=0`
`<=> x^2 +4x-3x-12=0`
`<=> x(x+4)-3(x+4)=0`
`<=> (x+4)(x-3)=0`
`<=> x+4=0 hoặc x-3=0`
`<=> x=-4 hoặc x=3`
d)
`x^2 -x-6=0`
`<=>x^2 -3x+2x-6=0`
`<=> x(x-3)+2(x-3)=0`
`<=> (x-3)(x+2)=0`
`<=> x-3=0 hoặc x+2=0`
`<=> x=3 hoặc x=-2`
e)
`2x^2 -3x-5=0`
`<=> 2x^2 -5x+2x-5=0`
`<=> x(2x-5)+(2x-5)=0`
`<=> (2x-5)(x+1)=0`
`<=> 2x-5=0 hoặc x+1=0`
`<=> x=5/2 hoặc x=-1`
\(\Leftrightarrow x\left(5x^2-7x+5x-7\right)=0\\ \Leftrightarrow x\left[5x\left(x+1\right)+7\left(x+1\right)\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\5x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{7}{5}\end{matrix}\right.\)
\(\Leftrightarrow5x^3+5x^2-7x^2-7x=0\)
\(\Leftrightarrow5x^2\left(x+1\right)-7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(5x^2-7x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\5x^2-7x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
a)Ta có \(\left(2x+1\right)\left(x^2+2\right)=0\)<=>
2x+1=0<=>x=\(-\frac{1}{2}\)
hoặc \(x^2+2=0\)<=>\(x^2=-2\)(Vô lí)
Vậy tập nghiệm của pt S=(\(-\frac{1}{2}\))
b)\(\left(x^2+4\right)\left(7x-3\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x^2=-4\\x=\frac{3}{7}\end{matrix}\right.\)
\(x^2=-4\) vô lí
Vậy ..........
c)\(\left(x^2+x+1\right)\left(6-2x\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+x+1=0\\6-2x=0\end{matrix}\right.\)
Vì \(x^2+x+1>0\)(dễ dàng c/m)
=>6-2x=0=>x=3
Vậy...
d)\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
<=>8x-4=0,x=\(\frac{1}{2}\)
hoặc \(x^2+2x+2=0\)(vô lí)
Vậy .....
2x2-7x+6=0
=> 2x2-3x-4x+6=0
=>x(2x-3)-2(2x-3)=0
=>(x-2)x(2x-3)=0
=>TH1 x-2=0=>x=2
=>TH2 2x-3=0=>2x=3=>x=3/2
Gõ talex dễ nhìn hơn nha bạn!