K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2022

Áp dụng định lý Pitago cho tam giác vuông ACD:

\(CD^2=AD^2+AC^2\)

Áp dụng định lý Pitago cho tam giác vuông ABC:

\(CB^2=AB^2+AC^2\)

\(\Rightarrow CD^2-CB^2=AD^2+AC^2-AB^2-AC^2=AD^2-AB^2\) (1)

Áp dụng định lý Pitago cho tam giác vuông ADE:

\(ED^2=AD^2+AE^2\)

Áp dụng định lý Pitago cho tam giác vuông ABE:

\(EB^2=AB^2+AE^2\)

\(\Rightarrow ED^2-EB^2=AD^2+AE^2-AB^2-AE^2=AD^2-AB^2\) (2)

(1);(2) \(\Rightarrow CD^2-CB^2=ED^2-EB^2\)

15 tháng 2 2022

Ta cần CM: \(CD^2-CB^2=ED^2-EB^2\Leftrightarrow CD^2-AB^2-AC^2=ED^2-EB^2\Leftrightarrow EB^2-AB^2=ED^2-\left(CD^2-AC^2\right)\Leftrightarrow AE^2=ED^2-AD^2\left(luônđúng\right)\) (vì các tam giác ACD, ABE,ADE đều vuông tại A) \(\Rightarrowđpcm\)

26 tháng 6 2021

1.Xét ΔHBA và ΔABC có:

góc AHB=góc BAC=90o

Góc B chung 

=> ΔABC đồng dạng ΔHBA (g.g)

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)

2. Xét ΔHBI và ΔABE có:

góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)

góc BAE=góc IHB=90o

=>ΔHBI đồng dạng ΔABE (g.g)

 

 

3 tháng 8 2021

cảm ơn bn

2 tháng 5 2023

a. Diện tích của Δ ABC là:

 \(\dfrac{1}{2}\) . 6 . 8 = 24 cm2

b. Ta có: Δ ABC vuông tại A

Theo đ/lí Py - ta - go

BC= AB2 + AC2

BC2 = 62 + 82

BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Vì AD là tia phân giác của \(\widehat{A}\) 

\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\) 

 \(\Rightarrow\) \(\dfrac{6}{8}\) = \(\dfrac{DB}{10-DB}\) 

\(\Rightarrow\) \(\dfrac{3}{4}=\dfrac{DB}{10-DB}\) 

\(\Rightarrow\) 3 . (10 - DB) = 4DB

\(\Rightarrow\) 30 - 3DB - 4DB = 0

\(\Rightarrow\) 30 - 7DB = 0

\(\Rightarrow\)  DB = \(\dfrac{30}{7}\) \(\approx\) 4,3 cm

Ta có: DC = 10 - DB

 \(\Rightarrow\) DC = 10 - 4,3 

\(\Rightarrow\) DC = 5,7 cm

c. Xét ΔABC và ΔHBA:

     \(\widehat{A}=\widehat{H}\) = 900 (gt)

      \(\widehat{B}\) chung

\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)

Ta có: ΔABC \(\sim\) ΔHBA 

\(\dfrac{AB}{HB}=\dfrac{BC}{BA}\) 

\(\Rightarrow\) AB2 = BH . BC

Vì ΔABC vuông tại A

SΔABC  = \(\dfrac{AH.BC}{2}\) \(\dfrac{AB.AC}{2}\) \(\Rightarrow\) AB . AC

\(\Leftrightarrow\) AH = \(\dfrac{AB.AC}{BC}\) = \(\Leftrightarrow\) \(\dfrac{1}{AH}\) = \(\dfrac{AH}{AB.AC}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AB^2}\) = \(\dfrac{BC^2}{AB^2.AC^2}\) 

Mặt khác theo đ/lí Py - ta - go:

BC2 = AB2 + AC2

\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{AB^2+AC^2}{AB^2.ÂC^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\) 

\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\) (dpcm)

nhớ tick cho cj nha

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

Do đó: ΔHAC\(\sim\)ΔABC

b: Xét ΔABH vuông tại H có HD là đường cao

nên \(AH^2=AD\cdot AB\left(1\right)\)

c: Xét ΔACH vuông tại H có HE là đườg cao

nên \(AH^2=AE\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

19 tháng 4 2023

bạn ơi sao vuông tại h có đường cao lại suy ra đc ah bình =ad.ab rứa mik khoog hiểu =((

 

 

29 tháng 4 2019

Bn làm sai rồi!

Góc E2 đề vẫn chưa cho vuông

1.Ta có : Tam giác ABC là tam giác vuông cân.

=>AB=AC

Mặt khác có:

Mà =>lại có: Tam giác HBA vuông tại H và tam giác KAC vuông tại K

Từ:=> Tam giác HBA = Tam giác KAC [ch-gn]

=> BH=AK [đpcm]

Mặt khác mà :=> Tam giác AHM= Tam giác CKM [c.g.c] vì

Có:AM=MC [AM là trung tuyến ứng với cạnh huyền]

AH=CK [ câu a ]

=>MH=MK

Ta có: [AM là đường cao]

Từ => HMK vuông

Kết hợp =>MHK là tam giác vuông cân.

TICK CHO MK NHA CHÚC BẠN HỌC GIỎI.hihi

 

 

 

MK BT BÀI NÀY MK LÀM BẠN TICK CHO MK NHA