tìm MIN của a^2 + ab +b^2 -3a -3b+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=a^2+ab+b^2-3b-3a+3$
$4A=4a^2+4ab+4b^2-12a-12b+12$
$=(4a^2+4ab+b^2)-12a-12b+3b^2+12$
$=(2a+b)^2-6(2a+b)+9+(3b^2-6b+3)$
$=(2a+b-3)^2+3(b-1)^2\geq 0+3.0=0$
Vậy $A_{\min}=0$. Giá trị này đạt tại $2a+b-3=b-1=0$
$\Leftrightarrow b=1; a=1$
Câu B tương tự câu A nhé. Chỉ khác mỗi đặt tên biến.
---------------
$C=x^2+5y^2-4xy+2y-3$
$=(x^2-4xy+4y^2)+(y^2+2y)-3$
$=(x-2y)^2+(y^2+2y+1)-4$
$=(x-2y)^2+(y+1)^2-4\geq 0+0-4=-4$
Vậy $C_{\min}=-4$. Giá trị này đạt tại $x-2y=y+1=0$
$\Leftrightarrow y=-1; x=-2$
Lời giải :
\(A=a^2+ab+b^2-3a-3b+2014\)
\(A=\frac{1}{2}\left(2a^2+2ab+2b^2-6a-6b+4028\right)\)
\(A=\frac{1}{2}\left[\left(a^2+2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)+4010\right]\)
\(A=\frac{1}{2}\left[\left(a+b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2+4010\right]\)
Dấu "=" không xảy ra nha bạn, bạn xem lại đề
Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:
Min:
\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)
\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)
\(\Rightarrow P\ge\sqrt{2}\)
\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị
\(F=a^2+ab+b^2-3a-3b+3\)
\(=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(ab-a-b+1\right)\)
\(=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)
\(=\left[\left(a-1\right)^2+\left(a-1\right)\left(b-1\right)+\frac{1}{4}\left(b-1\right)^2\right]+\frac{3}{4}\left(b-1\right)^2\)
\(=\left[\left(a-1\right)+\frac{1}{2}\left(b-1\right)\right]^2+\frac{3}{4}\left(b-1\right)^2\)
Ta thấy \(\left[\left(a-1\right)+\frac{1}{2}\left(b-1\right)\right]^2\ge0\) và \(\frac{3}{4}\left(b-1\right)^2\ge0\) với mọi a;b
Nên \(A=\left[\left(a-1\right)+\frac{1}{2}\left(b-1\right)\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\forall a;b\) có GTNN là 0
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
\(4F=4a^2+4ab+4b^2-12a-12b+12\)
\(=\left(4a^2+b^2+4+4ab-12a-6b\right)+\left(3b^2-6b+3\right)\)
\(=\left(2a+b-2\right)^2+3\left(b-1\right)^2\)
vì \(\left(2a+b-2\right)^2\ge0\forall a,b\)
\(3\left(b-1\right)^2\ge0\forall b\)
\(\Rightarrow4F\ge0\forall a,b\Rightarrow F\ge0\forall a,b\)
\(\Rightarrow GTNN\)của F là 0 \(\Leftrightarrow\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)
Thật sự á, cái đề làm t đau đầu từ sáng giờ, nhờ cmt của bạn Arima Kousei t mới làm đc!
Đề đúng là tìm min của \(M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\)
Áp dụng BĐT Cô - si cho 4 số không âm, ta được:
\(3a^4+1=a^4+a^4+a^4+1\ge4\sqrt[4]{a^{12}}=4a^3\)
Tương tự ta có: \(3b^4+1\ge4b^3\)
\(\Rightarrow M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\)
Ta có BĐT phụ \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)(*)
Thật vậy (*)\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
\(\Rightarrow M\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b\right)^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^3}{4\left(a+b+c\right)^3}=\frac{1}{4}\)
Đẳng thức xảy ra khi a = b = 1; c = 2
P/S: Sai nữa thì chịu ,mình đã cố gắng hết sức
dat bieu thuc la A rui tim min 2A
nhóm lại thành 2 nhóm có dạng
(xa + yb)^2 + (zb + t)^2
với x,y,z,t là các số thực