Cho tam giác ABC cân tại A, phân giác BD, CE. Biết DE = 5 cm, BC= 8 cm . Tính AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>AD=AE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
=>ΔAEI=ΔADI
=>góc EAI=góc DAI
=>AI là phân giác của góc BAC
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>A,I,M thẳng hàng
-.- LM XOG LỠ PẤM HỦY T~T
A)THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow10^2=6^2+AC^2\)
\(\Rightarrow100=36+AC^2\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
b) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)CÓ
\(\widehat{BAD}=\widehat{BED}=90^o\)
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
\(BD\)LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta EBD\)(CH-GN)
=>\(AB=EB\)
=>\(\Delta ABE\)CÂN TẠI B
C) TRONG\(\Delta ABE\)CÓ BM LÀ PHÂN GIÁC
=> BM VỪA LÀ PHÂN GIÁC VỪA LÀ TRUNG TUYẾN
=> AM=ME
VÌ AM=ME (CMT)=> CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AEC\)
MÀ \(CG=2GM\)
=> G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)
CÓ EN=NC (GT) =>AN LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta AEC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)
=> G NẰM TRÊN ĐƯỜNG TRUNG TUYẾN AN
=> BA ĐIỂM A,G,N THẲNG HÀNG
-Xét △ABC có: BD, CE lần lượt là các đường phân giác (gt)
\(\Rightarrow\dfrac{BE}{AE}=\dfrac{BC}{AC};\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (định lí đường phân giác trong tam giác)
Mà \(AB=AC\) (△ABC cân tại A)
\(\Rightarrow\dfrac{BE}{AE}=\dfrac{DC}{AD}\) nên DE//BC (định lí Ta-let đảo)
\(\Rightarrow\dfrac{AB}{AE}=\dfrac{BC}{DE}=\dfrac{8}{5}\) (định lí Ta-let)
\(\Rightarrow\dfrac{AB}{AE}-1=\dfrac{8}{5}-1\)
\(\Rightarrow\dfrac{BE}{AE}=\dfrac{3}{5}\) mà \(\dfrac{BE}{AE}=\dfrac{BC}{AC}\left(cmt\right)\)
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{3}{5}\)
\(\Rightarrow AC=AB=\dfrac{5.BC}{3}=\dfrac{5.8}{3}=\dfrac{40}{3}\left(cm\right)\)