K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

\(3x^2+6x+3+3y^2-12y+12=0\)

\(3\left(x^2+2x+1\right)+3\left(y^2-4y+4\right)=0\)

\(3\left(x+1\right)^2+3\left(y-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

4 tháng 6 2016

\(3x^2+3y^2+6x-12y+15=0\)

\(\Rightarrow3.\left(x^2+y^2+2x-4y+5\right)=0\Rightarrow x^2+y^2+2x-4y+5=0\)

\(\Rightarrow x^2+y^2+2x-4y+1+4=0\)

\(\Rightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2=0\)

\(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-2\right)^2=0\)nên để thỏa mãn đẳng thức thì

  \(\left(x+1\right)^2=\left(y-2\right)^2=0\) <=> x=-1 và y=2

15 tháng 6 2018

\(3x^2+3y^2+6x-12y+15=\left(3x^2+6x+3\right)+\left(3y^2-12y+12\right)\)

                                                             \(=3.\left(x^2+2x+1\right)+3.\left(y^2-4y+4\right)\)

                                                                \(=3.\left(x+1\right)^2+3.\left(y-2\right)^2\)

                                                                 \(=3.\left(\left(x+1\right)^2+\left(y-2\right)^2\right)\)

\(\Rightarrow3.\left(\left(x+1\right)^2+\left(y-2\right)^2\right)=0\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2=0\)

Mà \(\left(x+1\right)^2\ge0,\forall x\inℝ\)

          \(\left(y-2\right)^2\ge0,\forall y\inℝ\)

\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

12 tháng 6 2019

Điều kiện x ≥ − 7 y ≥ − 1 3 *

x 2 + 2 x y + 8 x = 3 y 2 + 12 y + 9             ( 1 ) x 2 + 4 y + 18 − 6 x + 7 − 2 x 3 y + 1 = 0       ( 2 )

Có 1 ⇔ x 2 + 2 y + 4 x − 3 y 2 − 12 y − 9   = 0 , ta coi (1) là phương trình bậc hai ẩn x và y là tham số, giải x theo y ta được x = − 3 y − 9 x = y + 1

Với x = − 3 y − 9 thì (*) ⇒ − 3 y − 9 ≥ − 7 y ≥ − 1 3 ⇔ y ≤ − 2 3 y ≥ − 1 3 (vô lí)

Hệ phương trình có nghiệm là 2 ; 1 ⇒ a = 2 , b = 1 ⇒ T = 24

Đáp án cần chọn là: A

25 tháng 8 2015

 

a) x^2 + 4y^2 + 6x - 12y + 18 = 0

<=>x2+6x+9+4y2-12y+9=0

<=>(x+3)2+(2y-3)2=0

<=>x+3=0 và 2y-3=0

<=>x=-3 và y=3/2

 

b) 5x^2 +9y^2 - 12xy - 6x +9 = 0

<=>x2-6x+9+4x2-12xy+9y2=0

<=>(x-3)2+(2x-3y)2=0

<=>x-3=0 và 2x-3y=0

<=>x=3 và 2.3-3y=0

<=>x=3 và y=2

  

5 tháng 1 2017

21 tháng 5 2021

a/ \(x^2-2.4x+16+y^2+2y+1+z^2=16\Leftrightarrow\left(x-4\right)^2+\left(y+1\right)^2+z^2=16\)

\(\Rightarrow\left\{{}\begin{matrix}I\left(4;-1;0\right)\\R=\sqrt{16}=4\end{matrix}\right.\)

b/ \(x^2+y^2+z^2+2x-y+5z-\dfrac{2}{3}=0\Leftrightarrow x^2+2x+1+y^2-2.\dfrac{1}{2}y+\dfrac{1}{4}+z^2+2.\dfrac{5}{2}z+\dfrac{25}{4}=\dfrac{2}{3}+1+\dfrac{1}{4}+\dfrac{25}{4}\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z+\dfrac{5}{2}\right)^2=\dfrac{49}{6}\) \(\Rightarrow\left\{{}\begin{matrix}I\left(-1;\dfrac{1}{2};-\dfrac{5}{2}\right)\\R=\dfrac{7}{\sqrt{6}}\end{matrix}\right.\)

P/s: câu c bạn tự làm nốt ạ!

14 tháng 12 2023

\(3x^2-3y^2-12x+12y\\ =3\left(x^2-y^2\right)-12\left(x-y\right)\\ =3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\\ =3\left(x-y\right)\left(x+y-4\right)\)

3x2-3y2-12x+12y

=3(x2-y2)-12(x-y)

=3(x-y)(x+y)-4.3(x-y)

=3(x-y)(x+y-4)