K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

\(x^2-2xy+x-2y\ge0\)

\(\Leftrightarrow x\left(x-2y\right)+x-2y\ge0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2y\right)\ge0\)

\(\Leftrightarrow x\ge2y\)( vì x là số thực không âm nên x+1 >0 )

\(\Leftrightarrow0\le y\le\frac{x}{2}\)

\(\Leftrightarrow y^2\le\frac{x^2}{4}\)( do 2 vế không âm nên bình phương hai vế )

\(\Rightarrow M\le\frac{x^2+3x-5x^2}{4}=\frac{-x^2}{4}+3x=9-\left(3-\frac{x}{2}\right)^2\le9\)

Vậy Mmax=9 <=> x=6, y =3

2 tháng 7 2016

Từ \(x^2-2xy+x-2y\le0.\)

\(\Leftrightarrow\left(x-2y\right)\left(x+1\right)\le0\)(1). Do x;y là các số thực không âm nên x + 1 >0 nên từ (1) => \(0\le x\le2y\)

Với mọi \(0\le x\le2y\)thì \(x^2+3x\le\left(2y\right)^2+3\left(2y\right)=4y^2+6y\) 

Do đó, \(M=x^2-5y^2+3x\le4y^2-5y^2+6y=-y^2+6y-9+9=-\left(y-3\right)^2+9\le9\forall y\)

Vậy GTLN của M là: 9 khi y = 3 và x = 2y = 6.

13 tháng 3 2020

Quan trọng là dự đoán:D

Dự đoán Max =70 khi (x;y) =(-8;0)

Ta có: \(70-P=\frac{6\left(x+y+8\right)^2+17y^2}{11}\ge0\)

Hoặc một phân tích khác:\(70-P=\frac{\left(6x+23y+48\right)^2+102\left(x+8\right)^2}{253}\ge0\)

13 tháng 3 2020

Bạn sử dụng đẳng thức \(ax^2+bx+c=a\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\)

Và chú ý: \(70-P=70-\left[P-\frac{17}{11}\left\{x^2+2y^2+2xy-\left(24-5x-5y\right)\right\}\right]\)

27 tháng 12 2016

mik chỉ giải được khi bé hơn hoặc bằng 0 thôi bạn thông cảm nha 

x^2-2xy+x-2y<hoặc bằng 0

x(x+1)-2y(x+1)<hoặc bằng 0

(x+1)(x-2y)< hoăc bằng 0 

mà x+1>0 do x>0 

nên x-2y < hoặc bằng 0 

     x<hoặc bằng 2y suy ra 3x bé hơn hoặc bằng 6y

A=x^2-5y^2+3x

  =x^2-4y^2-y^2+3x

  =(x-2y)(x+2y)-y^2+3x < hoặc bằng (x-2y)(x+2y)-y^2+6y-9+9 =(x-2y)(x+2y)-(y-3)^2+9 bé hơn hoặc bằng 9 do cả hai cái tích và bình phương trên đều bé hơn hoặc bằng 0 

suy ra GTLN của A=9 tại y=3,x=6   

2 tháng 7 2016

Bạn có thể vào fx đc không anh

Khó hiểu quá ?????

2 tháng 7 2016

em học rất nhiều dạng chứng minh rồi nhưn chưa dạng nào như thế này hết 

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

NV
5 tháng 11 2021

\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)

\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)

\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

NV
29 tháng 1 2021

Đề bài là thế này đúng không bạn:

Cho các số thực không âm x; y thỏa mãn: \(x^2+y^2\le2\)

Tìm GTLN của: \(P=\sqrt{29x+3y}+\sqrt{3x+29y}\)

P/s: bạn nên sử dụng tính năng gõ công thức để người khác dễ đọc hơn (đây là tính năng rất đơn giản, dễ dàng làm quen, nó nằm ở biểu tượng \(\sum\) trên khung soạn thảo)

29 tháng 1 2021

Tính giá trị lớn nhất