K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

a.\(x^2-2.3.x+\left(3\right)^2=\left(x-3\right)^2\)

Mà x=-2 

\(\Rightarrow\left(-2-3\right)^2=\left(-5\right)^2=25\)

b.\(\left(3x\right)^2+2.3x.1+3=\left(3x+1\right)^2\)

Mà x=-6

\(\Rightarrow\left[3.\left(-6\right)+1\right]^2=\left(-18+1\right)^2=\left(-17\right)^2=289\)

T I C K nha cảm ơn nha

5 tháng 7 2016

a)x^2 -6x +9

=(x-3)2.Thay x=-2 vào ta được:

A=[(-2)-3]2=(-5)2=25

b)9x^2 + 6x + 1 

=(3x+1)2.Thay x=-6 vào ta được:

B=[(-6)*3+1]2=[(-18)+1]2

=(-17)2=289

10 tháng 10 2021

a: \(4-6x+\dfrac{9}{4}x^2=\left(2-\dfrac{3}{2}x\right)^2\)

c: \(x^6-3x^5+3x^4-x^3=\left(x^2-x\right)^3\)

7 tháng 10 2015

a) x2-6x+10

=(x^2-6x+9)+1

=(x-3)^2+1

vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0

Hay x^2-6x+10>0

16 tháng 10 2021

\(a,=\left(x-5\right)\left(x+5\right)\\ b,=\left(x-3\right)^2\\ c,=\left(3x-2\right)\left(3x+2\right)\\ d,=\left(x+1\right)^2\\ e,=\left(x-10\right)\left(x+10\right)\)

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)

b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)

c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)