Cho tam giác ABC cân tại A , trung tuyến CD . Trên tia đối tia BA lấy K sao cho BK = BA
Chứng minh : CD = \(\frac{1}{2}\) CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC có AD là đường trung tuyến nên cũng là trung điểm của BC
=> CD=1/2BC (1) tam giác ABC có AB=AC mà AB=BK nên BK=AC hay CK=BC (tính chất) (2)
từ (1) và (2) suy ra CD=1/2CK (đpcm)
tam giác ABC có AD là đường trung tuyến nên cũng là trung điểm của BC
=> CD=1/2BC (1) tam giác ABC có AB=AC mà AB=BK nên BK=AC hay CK=BC (tính chất) (2)
từ (1) và (2) suy ra CD=1/2CK (đpcm)
:3
Lời giải:
Xét tam giác $NBC$ và $MCB$ có:
$\widehat{NBC}=\widehat{MCB}$ (do tam giác $ABC$ cân tại $A$)
$BC$ chung
$NB = \frac{AB}{2}=\frac{AC}{2}=MC$
$\Rightarrow \triangle NBC=\triangle MCB$ (c.g.c)
$\Rightarrow NC=MB(1)$
Tam giác $ADC$ có $B, M$ lần lượt là trung điểm $AD, AC$ nên $MB$ là đường trung bình ứng với cạnh $DC$
$\Rightarrow MB=\frac{1}{2}CD(2)$
Từ $(1); (2)\Rightarrow NC=\frac{1}{2}CD$
$\Rightarrow CD=2NC$
- Trên tia đối của MC lấy điểm E sao cho ME = MC.
- Tứ giác AEBC có hai đường chéo AB và EC cắt nhau tại trung điểm M mỗi đường => AEBC là hình bình hành => EB // AC; EB = AC.
- Có AB = AC (do tam giác ABC cân tại A); AB = BD (theo giả thiết); lại có EB = AC (chứng minh trên) => EB = BD.
- Có góc ABC + góc DBC = 180 độ (Hai góc kề bù). Mà góc ABC = góc ACB (do tam giác ABC cân tại A) => góc DBC + góc ACB = 180 độ. (1)
- Có BE // AC (chứng minh trên) => góc EBC + góc ACB = 180 độ (Hai góc trong cùng phía). (2)
Từ (1) và (2) => góc DBC = góc EBC ( = 180 độ - góc ACB).
- Xét tam giác CBE và tam giác CBD có:
CB là cạnh chung
góc EBC = góc DBC (chứng minh trên)
EB = BD (chứng minh trên)
=> tam giác CBE = tam giác CDB (c.g.c) => CE = CD (Hai cạnh tương ứng). Mà CE = 2CM (cách vẽ) => CD = 2CM.
Vậy CE = 2CM.